I'm a Research Scientist at Meta Fundamental AI Research (FAIR) team in New York. I think about how to generate things. My research is on building simplified abstractions of the world through the lens of dynamical systems and flows.

Lately, I've been exploring insertion-based sequence generation [Edit Flows], investigating scaling laws and new capabilities for multimodal generation [OneFlow]. Among my research outputs, data-driven methods such as [Flow Matching] have been applied successfully by many for foundation models of video and audio [Movie Gen, SD3, etc]. Additionally, reward-driven methods such as [Adjoint Matching] have been applied to large-scale diffusion finetuning for internal GenAI models and AI & Chemistry [AS/ASBS].

CV | Github | Twitter | Google Scholar | rtqichen@gmail.com

Research | Talk slides

Selected Research

  • OneFlow: Concurrent Mixed-Modal And Interleaved Generation with Edit Flows John Nguyen, Marton Havasi, Tariq Berrada, Luke Zettlemoyer, Ricky T. Q. Chen Preprint. 2025 arxiv | site
  • Edit Flows: Flow Matching with Edit Operations Marton Havasi, Brian Karrer, Itai Gat, Ricky T. Q. Chen Advances in Neural Information Processing Systems (NeurIPS). 2025 arxiv
  • Adjoint Schrödinger Bridge Sampler (ORAL) Guan-Horng Liu, Jaemoo Choi, Yongxin Chen, Benjamin Kurt Miller, Ricky T. Q. Chen Advances in Neural Information Processing Systems (NeurIPS). 2025 arxiv
  • Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching Aaron Havens, Benjamin Kurt Miller, Bing Yan, ..., Xiang Fu, Guan-Horng Liu, Ricky T. Q. Chen International Conference on Machine Learning (ICML). 2025 arxiv | code | models
  • Flow Matching with General Discrete Paths: A Kinetic-Optimal Perspective (ORAL) Neta Shaul, Itai Gat, Marton Havasi, Daniel Severo, Anuroop Sriram, Peter Holderrieth, Brian Karrer, Yaron Lipman, Ricky T. Q. Chen International Conference on Learning Representations (ICLR). 2025 arxiv
  • Generator Matching: Generative modeling with arbitrary Markov processes (ORAL) Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer, Ricky T. Q. Chen, Yaron Lipman International Conference on Learning Representations (ICLR). 2025 arxiv
  • Adjoint Matching: Fine-tuning Flow and Diffusion Generative Models with Memoryless Stochastic Optimal Control (SPOTLIGHT) Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, Ricky T. Q. Chen International Conference on Learning Representations (ICLR). 2025 arxiv
  • Discrete Flow Matching Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi, Yaron Lipman Advances in Neural Information Processing Systems (NeurIPS). 2024 arxiv
  • Flow Matching Guide and Code Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q. Chen, David Lopez-Paz, Heli Ben-Hamu, Itai Gat Arxiv. 2024 arxiv | code
  • FlowMM: Generating Materials with Riemannian Flow Matching Benjamin Kurt Miller, Ricky T. Q. Chen, Anuroop Sriram, Brandon M. Wood International Conference on Machine Learning (ICML). 2024 arxiv | code
  • Generalized Schrödinger Bridge Matching Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos A Theodorou, Ricky T. Q. Chen International Conference on Learning Representations (ICLR). 2024 arxiv | code
  • Flow Matching on General Geometries (OUTSTANDING PAPER HONORABLE MENTION) Ricky T. Q. Chen, Yaron Lipman International Conference on Learning Representations (ICLR). 2024 arxiv | code
  • Flow Matching for Generative Modeling (SPOTLIGHT) Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, Matt Le International Conference on Learning Representations (ICLR). 2023 arxiv
  • Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, Aaron Courville International Conference on Learning Representations (ICLR). 2021 arxiv | bibtex | code
  • Learning Neural Event Functions for Ordinary Differential Equations Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel International Conference on Learning Representations (ICLR). 2021 arxiv | bibtex | slides | poster
  • SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models (SPOTLIGHT) Yucen Luo, Alex Beatson, Mohammad Norouzi, Jun Zhu, David Duvenaud, Ryan P. Adams, Ricky T. Q. Chen International Conference on Learning Representations (ICLR). 2020 arxiv | bibtex | poster | colab
  • Residual Flows for Invertible Generative Modeling (SPOTLIGHT) Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, Jörn-Henrik Jacobsen Advances in Neural Information Processing Systems (NeurIPS). 2019 arxiv | bibtex | slides | talk | poster | code
  • Invertible Residual Networks (LONG ORAL) Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, Jörn-Henrik Jacobsen International Conference on Machine Learning (ICML). 2019 arxiv | bibtex | code
  • FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models (ORAL)
    (BEST STUDENT PAPER @ AABI 2018)
    Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, David Duvenaud International Conference on Learning Representations (ICLR). 2019 arxiv | bibtex | poster | code
  • Neural Ordinary Differential Equations (BEST PAPER AWARD) Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud Advances in Neural Information Processing Systems (NeurIPS). 2018 arxiv | bibtex | slides | poster | code