

Main Idea

- Construct generative model for data which replaces discrete invertible transformations with system of continuous-time dynamics using Instantaneous Change of Variables.
- Replace expensive Jacobian trace with stochastic estimate to compute unbiased log-density in *linear-time* while allowing *unrestricted* network architectures.
- Flexibility allows us to achieve better performance than previous reversible generative models.

Normalizing Flows

Generate data *x* by:

With invertible F_{θ} then:

$$z \sim p(z)$$
 $x = F_{ heta}(z)$

$$\log p(x) = \log p_z(F_{\theta}^{-1}(x)) - \log \left| \frac{\partial F_{\theta}}{\partial x} \right|$$

Restricted, simple transformations allow log $\left|\frac{\partial F_{\theta}}{\partial x}\right|$ to be computed efficiently. Compose multiple simple transformations for an expressive transformation satisfying invertibility and efficient log-determinants:

$${\sf F}_ heta(z)={\sf F}_ heta^{t_1}\circ\cdots\circ{\sf F}_ heta^{t_0}(z)$$

Continuous Normalizing Flows

Model the generative process with continuous dynamics:

$$egin{aligned} &z_0 \sim p(z_0)\ &rac{\partial z_t}{\partial t} = f_ heta(z_t,t)\ &x = z_1 = z_0 + \int_{t_0}^{t_1} f_ heta(z_t,t) \end{aligned}$$

To obtain the density we solve the initial value problem (IVP):

$$\log p(x) = \log p(z_0) - \int_{t_0}^{t_1} \operatorname{Tr}(\frac{d}{d})$$

Unbiased Log-Density Estimation

 $Tr(\partial f/\partial z_t)$ cannot be computed efficiently for unrestricted f. We utilize two techniques to estimate it efficiently:

Vector-Jacobian Products: Explicitly computing the Jacobian $\frac{\partial f}{\partial z_{\star}}$ cannot be done efficiently, but reverse-mode automatic differentiation cheaply computes $e^T \frac{\partial f}{\partial z_1}$ can be for any vector e.

Stochastic Trace Estimators: For any matrix A and a distribution p(e) over vectors where $\mathbb{E}[e] = 0$, Cov[e] = I, then:

$$\operatorname{Tr}(A) = \mathbb{E}_{p(e)}[e^T A e]$$

The Monte-Carlo estimator derived from this expectation is known as Hutchinson's estimator. Combining these two we can build an efficient unbiased estimator

$$\operatorname{Tr}\left(\frac{\partial f}{\partial z_t}\right) = \mathbb{E}_{p(e)}\left[\underbrace{\left(e^T\frac{\partial f}{\partial z_t}\right)}_{VJP}e\right]$$

which can be combined with Equation 2 to give

$$\log p(x) = \log p(z_0) - \mathbb{E}_{p(e)} \left[\int_{t_0}^{t_1} e^{\tau} \frac{\partial f}{\partial z_t} e \right]$$

FFJORD: Free-Form Continuous Dynamics for Scalable Reversible Generative Models

Will Grathwohl*, Ricky T. Q. Chen*, Jesse Bettencourt, Ilya Sutskever, David Duvenaud

*Equal Contribution University of Toronto, Vector Institute, OpenAI

(1)

)dt

(2)

Training with Adjoint Backpropagation

Given an objective of the form

 $L(z_1) = L\left(\underbrace{\int_0^1 f(z_t, t, \theta) dt}_{\text{Solution to IVP}}\right)$

we can obtain $\frac{\partial L}{\partial A}$ for gradient-based optimization by solving another IVP. We define a new quantity, the adjoint, a_t , which has dynamics $\frac{\partial a_t}{\partial t}$ $a_t = -\frac{\partial L}{\partial z_t} \qquad \frac{\partial a_t}{\partial t} = -a_t^T \frac{\partial f(z_t, t, \theta)}{\partial z_t}$

then solving backwards in time gives the desired gradients of the loss with respect to the parameters

 $\frac{\partial L}{\partial \theta} = \int_{t}^{t_0} a_t^T \frac{\partial f(z_t, t, \theta)}{\partial \theta} dt$

This allows us to use a black-box ODE solver to compute z_1 and also $\partial L/\partial \theta$.

Density Estimation: Qualitative

Data Glow

Table: Glow and FFJORD trained on 2D densities

Table: Samples from FFJORD trained on MNIST and CIFAR10.

FFJORD

Density Estimation: Quantitative

	POWER	GAS	HEPMASS	MINIB	BSDS	MNIST	CIFAR10
Real NVP	17	-8.33	18.71	13.55	-153.28	1.06	3.49
Glow	17	-8.15	18.92	11.35	-155.07	1.05	3.35
FFJORD	46	-8.59	15.26	10.43	-157.67	0.99*	3.40
MADE	3.08	-3.56	20.98	15.59	-148.85	2.04	5.67
MAF	24	-10.08	17.70	11.75	-155.69	1.89	4.31
TAN	48	-11.19	15.12	11.01	-157.03	_	-
DDSF	62	-11.96	15.09	8.86	-157.73	_	-

Table: Density estimation experiments. Negative log-likelihood on test set.

Variational Inference

	MNIST	Omniglot	Frey Faces	Caltech	
No Flow	$86.55\pm.06$	$104.28\pm.39$	4.53 ± .02	$110.80\pm.46$	
Planar	$86.06\pm.31$	$102.65\pm.42$	$4.40\pm.06$	$109.66\pm.42$	
IAF	$84.20\pm.17$	$102.41\pm.04$	$4.47\pm.05$	$111.58\pm.38$	
Sylvester	$83.32\pm.06$	$99.00\pm.04$	$4.45\pm.04$	$104.62\pm.29$	
FFJORD	$\textbf{82.82}\pm.\textbf{01}$	$\textbf{98.33}\pm.\textbf{09}$	$\textbf{4.39}\pm.\textbf{01}$	$104.03\pm.43$	
Table: Variational inference experiments. Negative ELBO on test set.					

Advantages / Disadvantages

Advantages:

- transformation
- Does not require dimension splitting or ordering choices • Reversible generative models can now be defined with standard neural network architectures

Disadvantages:

- Must rely on adaptive numerical ODE solvers for stable training • Computation time determined by solver, not user • Currently 4-5x slower than other reversible generative models (Glow, Real-NVP)

Conclusion

- We have presented a new class of reversible generative models.
- reversible models.
- Our model achieves state-of-the-art results on a number of challenging density estimation and variational inference benchmarks.
- Our approach demonstrates the utility of using continuous-time dynamics and should motive further development of Neural ODEs.

References

[1]Rezende, Mohamed. "Variational Inference Normalizing Flows." (2015) [2] Dinh, Sohl-Dickstein, Bengio. "Density estimation Real NVP." (2016) [3]Chen, Rubanova, Bettencourt, Duvenaud. "Neural ODEs." (2018) [4]Kingma, Dhariwal. "Glow: Generative Flow with Invertible 11 Convolutions." (2018)

• Guaranteed inverse by reversing order of integration, regardless of model parameterization • Efficient, unbiased log-probability estimation without restricting the Jacobian of the

• Our model utilizes continuous dynamics to side-step many issues in previous discrete-time