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Main Idea

• Construct generative model for data which replaces discrete invertible transformations with
system of continuous-time dynamics using Instantaneous Change of Variables.

• Replace expensive Jacobian trace with stochastic estimate to compute unbiased log-density in
linear-time while allowing unrestricted network architectures.

• Flexibility allows us to achieve better performance than previous reversible generative models.

Normalizing Flows

Generate data x by:
z ∼ p(z) x = Fθ(z)

With invertible Fθ then:

log p(x) = log pz(F
−1
θ (x))− log
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Restricted, simple transformations allow log |∂Fθ∂x | to be computed efficiently.
Compose multiple simple transformations for an expressive transformation satisfying invertibility
and efficient log-determinants:
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Continuous Normalizing Flows
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Model the generative process with continuous dynamics:

z0 ∼ p(z0)
∂zt
∂t

= fθ(zt, t)

x = z1 = z0 +

∫ t1

t0

fθ(zt, t)dt

To obtain the density we solve the initial value problem
(IVP):

log p(x) = log p(z0)−
∫ t1

t0

Tr(
∂fθ
∂zt

)dt (2)

Unbiased Log-Density Estimation

Tr(∂f /∂zt) cannot be computed efficiently for unrestricted f .
We utilize two techniques to estimate it efficiently:

Vector-Jacobian Products: Explicitly computing the Jacobian ∂f
∂zt

cannot be done efficiently,

but reverse-mode automatic differentiation cheaply computes eT ∂f
∂zt

can be for any vector e.

Stochastic Trace Estimators: For any matrix A and a distribution p(e) over vectors where
E[e] = 0,Cov[e] = I , then:

Tr(A) = Ep(e)[e
TAe]

The Monte-Carlo estimator derived from this expectation is known as Hutchinson’s estimator.
Combining these two we can build an efficient unbiased estimator
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which can be combined with Equation 2 to give

log p(x) = log p(z0)− Ep(e)

[∫ t1
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e

]
(3)

Training with Adjoint Backpropagation

Given an objective of the form

L(z1) = L

∫ 1

0

f (zt, t, θ)dt︸ ︷︷ ︸
Solution to IVP


we can obtain ∂L

∂θ for gradient-based optimization by solving another IVP.

We define a new quantity, the adjoint, at, which has dynamics ∂at
∂t

at = −∂L
∂zt

∂at
∂t

= −aTt
∂f (zt, t, θ)

∂zt
then solving backwards in time gives the desired gradients of the loss with respect to the
parameters

∂L

∂θ
=

∫ t0

t1

aTt
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∂θ
dt

This allows us to use a black-box ODE solver to compute z1 and also ∂L/∂θ.

Density Estimation: Qualitative

Data Glow FFJORD

Table: Glow and FFJORD trained on 2D densities.

Data Samples

Table: Samples from FFJORD trained on MNIST and CIFAR10.

Density Estimation: Quantitative

POWER GAS HEPMASS MINIB BSDS MNIST CIFAR10

Real NVP -.17 -8.33 18.71 13.55 -153.28 1.06 3.49
Glow -.17 -8.15 18.92 11.35 -155.07 1.05 3.35
FFJORD -.46 -8.59 15.26 10.43 -157.67 0.99* 3.40

MADE 3.08 -3.56 20.98 15.59 -148.85 2.04 5.67
MAF -.24 -10.08 17.70 11.75 -155.69 1.89 4.31
TAN -.48 -11.19 15.12 11.01 -157.03 - -
DDSF -.62 -11.96 15.09 8.86 -157.73 - -

Table: Density estimation experiments. Negative log-likelihood on test set.

Variational Inference

MNIST Omniglot Frey Faces Caltech

No Flow 86.55± .06 104.28± .39 4.53± .02 110.80± .46
Planar 86.06± .31 102.65± .42 4.40± .06 109.66± .42
IAF 84.20± .17 102.41± .04 4.47± .05 111.58± .38
Sylvester 83.32± .06 99.00± .04 4.45± .04 104.62± .29
FFJORD 82.82± .01 98.33± .09 4.39± .01 104.03± .43

Table: Variational inference experiments. Negative ELBO on test set.

Advantages / Disadvantages

Advantages:

• Guaranteed inverse by reversing order of integration, regardless of model parameterization

• Efficient, unbiased log-probability estimation without restricting the Jacobian of the
transformation

• Does not require dimension splitting or ordering choices

• Reversible generative models can now be defined with standard neural network architectures

Disadvantages:

• Must rely on adaptive numerical ODE solvers for stable training

• Computation time determined by solver, not user

• Currently 4-5x slower than other reversible generative models (Glow, Real-NVP)

Conclusion

• We have presented a new class of reversible generative models.

• Our model utilizes continuous dynamics to side-step many issues in previous discrete-time
reversible models.

• Our model achieves state-of-the-art results on a number of challenging density estimation and
variational inference benchmarks.

• Our approach demonstrates the utility of using continuous-time dynamics and should motive
further development of Neural ODEs.

References

[1]Rezende, Mohamed. ”Variational Inference Normalizing Flows.” (2015)
[2]Dinh, Sohl-Dickstein, Bengio. ”Density estimation Real NVP.” (2016)
[3]Chen, Rubanova, Bettencourt, Duvenaud. ”Neural ODEs.” (2018)
[4]Kingma, Dhariwal. ”Glow: Generative Flow with Invertible 11 Convolutions.” (2018)


