Neural Networks with
Cheap Differential Operators

Ricky T. Q. Chen, David Duvenaud

%) UNIVERSITY OF 7\ VECTOR
@ TORONTO INSTITUTE

Differential Operators

 Want to compute operators such as divergence:

V. f= Zaf(X)

where f: R 5 R¥ is aneural net.

* Solving PDEs * Fitting SDEs
* Finding fixed points * Continuous normalizing flows

Automatic Differentiation (AD)

Reverse-mode AD gives cheap vector-dacobian products:

; df1(x)
1 _
d c af(x) o
! [d_f (X)] = Z Vi :
% =1 afd(x)
Vg —

 For full Jacobian, need d separate passes
* In general, Jacobian diagonal has the same cost as the full Jacobian!

* \We restrict architecture to allow one-pass diagonal computations.

HollowNets

Allow efficient computation of dimension-wise derivatives of order K:

Dk f .= {5”%(”3) 0" foz) akfd(fv)r
N L O’ ox”

c R¢

with only k backward passes, regardless of dimension.

Example: E E

Jacobian D*>!f(x) = Jacobian diagonal

dim

HollowNet Architecture

HollowNets are composed of two sub-networks:

e Hidden units which don’t

depend on their respective o 0
input: \/ 7~
- XX
e QOutput units depend only on | /’\‘.’ :
their respective hidden and o o
INput:

fi(x) = t([x;, h;])

HollowNet Jacobians

Can get exact dimension-
wise derivatives by
disconnecting some
dependencies In backward
pass.

l.e. detach in PyTorch or

stop_gradient in TensorFlow.

HollowNet Jacobians

Can factor Jacobian into;

* A diagonal matrix (dimension-wise dependencies).

* A hollow matrix (all interactions).
I

0 P B
= —xh — — — di
dx axT(x) T ahf(x, h) axh(x) diagonal + hollow

Application |: Finding Fixed Points

Root finding problems (f(x) = () can be solved using Jacobi-Newton:

X =X =) X =X — [Dynf®]”)

2000

e Same solution with faster
convergence.

* \We applied to implicit ODE
solvers for solving stiff
equations.

Num. Evaluations

0

1500¢F

1000

500

e RK4(5)
w— ABM
= ABM-Jacobi

 —_

—————

0

2000 4000 6000 8000
Training Iteration

10000 12000

Application ll: Continuous Normalizing Flows

* Transforms distributions through an ODE:

39 20% 40% 60% 80% 100%

 Change in density given by divergence:

dlog p(x,) d d
— = tr (Ef(x)) = z, D i fX)|

Learning Stochastic Diff Eqs

* Fokker-Planck describes density change using Ddim and Djim

ap(t, x) . 1)
Py =) [~ @gimfp — (V) O f + (D}, diag(@)p + 2(Dgimdiag(g)) © (Vp) + 5 diag(8)” O (Dgim V'P)
=1

l

position

position
position

velocity
velocity

velocity

time

Data [Learned Density Samples from Learned SDE

Takeaways

e Dimension-wise derivatives are
costly for general functions.

* Restricting to hollow Jacobians
gives cheap diagonal grads.

e Useful for PDEs, SDEs,
normalizing flows, and
optimization.

