
Neural Networks with
Cheap Differential Operators

Ricky T. Q. Chen, David Duvenaud

Differential Operators
• Want to compute operators such as divergence:

∇ ⋅ f =
d

∑
i=1

∂fi(x)
∂xi f : ℝd → ℝdwhere is a neural net.

• Solving PDEs

• Finding fixed points

• Fitting SDEs

• Continuous normalizing flows

Automatic Differentiation (AD)
Reverse-mode AD gives cheap vector-Jacobian products:

• For full Jacobian, need separate passes

• In general, Jacobian diagonal has the same cost as the full Jacobian!

• We restrict architecture to allow one-pass diagonal computations.

vT [d
dx

f(x)] =
d

∑
i=1

vi
∂fi(x)

∂x
=

v1
∂f1(x)

∂x
⋮

vd
∂fd(x)

∂x

d

––––––––––––

––––––––––––

HollowNets
Allow efficient computation of dimension-wise derivatives of order k:

with only k backward passes, regardless of dimension.

Example:

Jacobian Jacobian diagonalDk=1
dim f(x) =

HollowNet Architecture

• Hidden units which don’t
depend on their respective
input:

• Output units depend only on
their respective hidden and
input:

hi = ci(x−i)

fi(x) = τi([xi, hi])

HollowNets are composed of two sub-networks:

Can get exact dimension-
wise derivatives by
disconnecting some
dependencies in backward
pass.

i.e. detach in PyTorch or
stop_gradient in TensorFlow.

HollowNet Jacobians

HollowNet Jacobians
Can factor Jacobian into:

• A diagonal matrix (dimension-wise dependencies).

• A hollow matrix (all interactions).

d
dx

f = ∂
∂x

τ(x, h) ∂
∂h

τ(x, h)
∂
∂x

h(x) diagonal + hollow+ =

Application I: Finding Fixed Points
Root finding problems can be solved using Jacobi-Newton:(f(x) = 0)

xt+1 = xt − f(x)

• Same solution with faster
convergence.

• We applied to implicit ODE
solvers for solving stiff
equations.

xt+1 = xt − [Ddim f(x)]−1 f(x)

Application II: Continuous Normalizing Flows
• Transforms distributions through an ODE:

• Change in density given by divergence:
d log p(x, t)

dt
= tr (d

dx
f(x)) =

d

∑
i=1

[Ddim f(x)]i

Learning Stochastic Diff Eqs
• Fokker-Planck describes density change using and :

∂p(t, x)
∂t

=
d

∑
i=1

[− (Ddim f)p − (∇p) ⊙ f + (D2
dimdiag(g))p + 2(Ddimdiag(g)) ⊙ (∇p) +

1
2

diag(g)2 ⊙ (Ddim ∇p)]
i

Ddim D2
dim

Takeaways

• Dimension-wise derivatives are
costly for general functions.

• Restricting to hollow Jacobians
gives cheap diagonal grads.

• Useful for PDEs, SDEs,
normalizing flows, and
optimization.

