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Differential Operators

 Want to compute operators such as divergence:

V. f= Zaf(X)

where f: R 5 R¥ is aneural net.

* Solving PDEs * Fitting SDEs
* Finding fixed points * Continuous normalizing flows



Automatic Differentiation (AD)

Reverse-mode AD gives cheap vector-dacobian products:
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 For full Jacobian, need d separate passes
* In general, Jacobian diagonal has the same cost as the full Jacobian!

* \We restrict architecture to allow one-pass diagonal computations.



HollowNets

Allow efficient computation of dimension-wise derivatives of order K:
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with only k backward passes, regardless of dimension.
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HollowNet Architecture

HollowNets are composed of two sub-networks:

e Hidden units which don’t

depend on their respective o 0
input: \/ 7~
- XX
e QOutput units depend only on | /’\‘.’ :
their respective hidden and o o
INput:

fi(x) = t([x;, h;])



HollowNet Jacobians

Can get exact dimension-
wise derivatives by
disconnecting some
dependencies In backward
pass.

l.e. detach in PyTorch or

stop_gradient in TensorFlow.



HollowNet Jacobians

Can factor Jacobian into;

* A diagonal matrix (dimension-wise dependencies).

* A hollow matrix (all interactions).
I
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Application |: Finding Fixed Points

Root finding problems ( f(x) = () can be solved using Jacobi-Newton:

X =X =) X =X — [Dynf®]” )

2000

e Same solution with faster
convergence.

* \We applied to implicit ODE
solvers for solving stiff
equations.
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Application ll: Continuous Normalizing Flows

* Transforms distributions through an ODE:

39 20% 40% 60% 80% 100%

 Change in density given by divergence:

dlog p(x, ) d d
— = tr (Ef(x)) = z, D i fX)|



Learning Stochastic Diff Eqs

* Fokker-Planck describes density change using Ddim and Djim
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Takeaways

e Dimension-wise derivatives are
costly for general functions.

* Restricting to hollow Jacobians
gives cheap diagonal grads.

e Useful for PDEs, SDEs,
normalizing flows, and
optimization.




