
Neural Networks with Cheap Differential Operators
Ricky T. Q. Chen and David Duvenaud

University of Toronto, Vector Institute

Overview

Given f : Rd → Rd , we want its dimension-wise k-th order derivatives:

Dk
dimf (x) :=

[
∂kf1(x)

∂xk1
· · · ∂

kfd(x)

∂xkd

]T
∈ Rd

• Example: divergence operator ∇ · f := tr(Ddimf ).
• Cost scales with D for general networks (same as full Jacobian),

because backprop only gives one row at a time.
• We introduce HollowNets, which let us evaluate dimensionwise

derivatives for same cost regardless of the dimension d.

Full Jacobian of
f (x)

Ddimf (x)
(diag of Jac)

Applications in:

I. Solving fixed-point problems.

II. Continuous-time generative modeling.

III. Partial differential equations.

HollowNet Architecture

Dimension-wise derivatives can be efficiently computed for restricted
architectures:

x1

x2

xd

...

h1

h2

hd

...

f1

f2

fd

...

Forward computation graph

Interactions
hi = ci(x−i). ci : R→ Rdh

The i -th hidden state depends on all inputs except the i -th input
dimension.
The conditioner network has a hollow Jacobian.

Per-Dim Transform
fi(x) = τi(xi, hi). τi : Rdh+1→ R outputs the i -th dimension given
the concatenated vector.
The transformer network has diagonal partial Jacobians.

Modified Backward Computation Graph

Full Jacobian factors into diagonal and hollow matrices:

d
dxf = ∂τ

∂x
∂τ
∂h

∂h
∂x

(diagonal) (hollow)

Can get exact gradients efficiently with modified backwards pass:

Let ĥ be stop_gradient(h) and
f̂ = τ (x , ĥ), so

∂ f̂ i(x)

∂xj
=
∂τi(xi, ĥi)

∂xj
=

{
∂fi(x)
∂xi

if i = j

0 if i 6= j

x1

x2

xd

...

h1

h2

hd

...

f1

f2

fd

...

Backward computation graph

App I: Implicit ODE Solvers for Stiff Equations

Implicit ODE solvers need to solve an optimization in inner loop.

General idea: replace Newton-Raphson

y (k+1) = y (k)−

[
∂F (y (k))

∂y (k)

]−1

F (y (k))

with Jacobi-Newton:

y (k+1) = y (k)− [DdimF (y)]−1� F (y (k))

0 2000 4000 6000 8000 10000 12000

Training Iteration

0

500

1000

1500

2000

N
um

.
E

va
lu

at
io

ns

RK4(5)

ABM

ABM-Jacobi

Jacobi-Newton Implicit Solver > Implicit Solver > Explicit Solver

App II: Continuous Normalizing Flows

If dx
dt = f (t, x), then ∂ log p(x)

∂t = − tr
(
∂f
∂x

)
.

(See Continuous Normalizing Flows section in ”Neural ODEs”)

Table: Evidence lower bound and negative log-likelihood.

Model
MNIST Omniglot

-ELBO ↓ NLL ↓ -ELBO ↓ NLL ↓
VAE -86.55 82.14 -104.28 97.25

Planar -86.06 81.91 -102.65 96.04

IAF -84.20 80.79 -102.41 96.08

Sylvester -83.32 80.22 -99.00 93.77

FFJORD (Stochastic trace) -82.82 − -98.33 −
Hollow-CNF (Ours; exact trace) -82.37 80.22 -97.42 93.90

Exact trace computation converges faster and results in easier to
solve dynamical systems than stochastic trace estimation.

App III: Learning Stochastic Differential Equations

dx(t) = f (x(t), t)dt + g(x(t), t)dW

Data Density Learned

Idea: match left- and right-hand-side of the Fokker-Planck
equation, which describes the change in density.

∂p(t, x)

∂t
= −

d∑
i=1

∂

∂xi
[fi(t, x)p(t, x)] +

1

2

d∑
i=1

∂2

∂x2
i

[
g 2
ii (t, x)p(t, x)

]
References

Germain et al. “MADE: Masked Autoencoder for Distribution Estimation.” (2015)
Huang et al. “Neural Autoregressive Flows.” (2018)

Chen et al. “Neural Ordinary Differential Equations.” (2018)


