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Modified Backward Computation Graph App Il: Continuous Normalizing Flows
Given f : R? 5 RY we want its dimension-wise k-th order derivatives: Full Jacobian factors into diagonal and hollow matrices: £ 9 — £(¢, x), then alo%f(x) 4 (%)_
ok f(X) _ D) () T - (See Continuous No.rma/izing Flows section in " Neural (.)DES”) B
dim Lo Oxj Table: Evidence lower bound and negative log-likelihood.
o Example: divergence operator V - f := tr(Dgyimf ). Mode MNIST Omniglot
o Cost scales with D for general networks (same as full Jacobian), OUe -ELBO | NLL | -ELBO | NLL |
because backprop only gives one row at a time. dg_ Or T dh (diagonal) (hollow) VAE 8655 8214 -10428 9795
e We introduce HollowNets, which let us evaluate dimensionwise dx Ox oh Ox Planar 8606 8191 -102.65 96.04
derivatives for same cost regardless of the dimension d. AF 8490 8079 -10041 96.08
Can get exact gradients efficiently with modified backwards pass: | | | |
Applications in: - - l-. Sylvester -83.32 80.22 -99.00 93.77
S N ' _ _ ] _
. Solving fixed-point problems " : OglOFRO, FPORD (Stochastic trace) 8282 = — 9833 =
I. Continuous-time generative modeling. Let /1 be StOP gradient(h) and hy f Hollow-CNF (Ours; exact trace) -82.37 80.22 -97.42 93.90
Ill. Partial differential equations. e . ).l fA T(x. h) A ot : : : Exact trace computation converges faster and results in easier to
ull Jacobian of  Dyimf (X Of i(x) 3Ti(Xi, hi) — ifi= Y . solve dynamical systems than stochastic trace estimation.
f(x) (diag of Jac) Ox; = Ox; — {08 | £i] (d/ m
Backward computation graph

HollowNet Architecture

Dimension-wise derivatives can be efficiently computed for restricted
architectures:

Implicit ODE solvers need to solve an optimization in inner loop.

@ h) \t@ General idea: replace Newton-Raphson
= - 1 -1
<z ‘ (k)
@~ h, () kD) — (6 OF (y'*) F(y1)
‘\ : Ay(k)
@ 6 with Jacobi-Newton: _ _ o
Forward computation graph Data Density Learnea
Interactions yE ) = y &) Dy F(y)] 7 © F(y™) dea: match left- and right-hand-side of the Fokker-Planck
hi = ci(x_;). ¢ : R — > dj 2000 equation, which cC:I!escribes the change in density
The /-th hidden state depends on all inputs except the /i-th input g | T RA) Op(t, x) 0 0*
dimension. E v : szJ bi Ot — Z Ox: [f,’(t,X)p(t,X)] | Z Ox 2 [gu( )p(t,X)}
= -JdCODI _ i —
The conditioner network has a hollow Jacobian. Tl =1 =
§ 500 R f
=
Per—Dlm Trar‘Sformd —|—1 ] _ - . OO ‘_ ’ -.6()'00 | SOIOO 10(I)OO 12000 e erences
f;(X) — 7-i(Xia h/) 7 R%™ — R outputs the /-th dimension given fraining fteration Germain et al. "MADE: Masked Autoencoder for Distribution Estimation.” (2015)
the concatenated vector. _ . . . Huang et al. “Neural Autoregressive Flows.” (2018)

Jacobi-Newton Implicit Solver > Implicit Solver > Explicit Solver

Chen et al. “Neural Ordinary Differential Equations.” (2018)

The transformer network has diagonal partial Jacobians.



