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Extending Neural ODEs with Discontinuities @ Neural Event ODE Threshold-based Event Functions

Solutions of ODEs are smooth trajectories. ODEs lack a Repeat: (i) solve until event, (ii) update state instantaneously. =~ Threshold-based event occurs when an integral over a positive
mechanism for modeling iInstantaneous interventions. function reaches a predetermined threshold.
while t; < T do t*
Example (simulation of a bouncing ball): (i) ti+1,2z., = ODESolveEvent(z;,f, g, t;) t” such that s = /t A(t) dt (2)
[ Zit] — h(t i+1y £ / )
o end (wl)1i1+e (i1, 2011 where \(t) > 0. Implemented by tracking A(t) = ftz)\ )ds as

part of the ODE state and using g(t, z(t)) = s — A(t).
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E Capable of modeling variable number of discontinuities.

D Allows exact gradients for integrate-and-fire spiking neural
% Ll nets, inverse sampling, temporal point processes (TPP), etc.
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Sampling from a temporal point process (repeat):
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Velocity is discontinuous. Position has discontinuous derivative. ' (i) sample s; ~ Exp(1)
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A Neural ODE fails to model this. A w \m (ii) solve for t; such that s; = [," A(t)dt
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We implement differentiable event handling to build models N I W Y . 5 5 p (i) p .
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Differentiable Event Handllng Figure: A Neural Event ODE jumps between a set of linear dynamics using W\
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only gradients. (Colors denote which linear system, not event boundaries.)
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Define event function g(z, t). Event defined as when o o — Deterministic
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Figure: Reverse-KL Training Figure: Discrete-valued Control
t*, z(t") = ODESolveEvent(z,f, g, ty, 0, ¢) (1)

Solves £ = f(z, t, 0) with initial state (zy, o) until event t*.  100f

Gradient of ODESolveEvent can be derived E E S o 5 )

by combining implicit function theorem and ~ . ~ ~ g zz S 2o \/
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adjoint method (see paper for details) |" ) _-- ) Ground truth (b) RNN (LSTM) (c) Neural ODE (d) Neural Event ODE b e : s — =
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Efficient O(1)-memory gradient implemented
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E . 1! . Moreover, Neural ODE baseline approximates collisions with
in github.com/rtqichen/torchdiffeq. d " Tu

_ | | - Figure: Visualization of a discrete-valued control (/eft) in a continuous-time
stiff trajectories, requiring 10X more compute to solve. environment (right), using the Hodgkin-Huxley model of neuronal dynamics.
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