
Learning Neural Event Functions for ODEs
Ricky T. Q. Chen1, Brandon Amos2, Maximilian Nickel2

1University of Toronto; Vector Institute. 2Facebook AI Research.

Extending Neural ODEs with Discontinuities

Solutions of ODEs are smooth trajectories. ODEs lack a
mechanism for modeling instantaneous interventions.

Example (simulation of a bouncing ball):

Velocity is discontinuous. Position has discontinuous derivative.
A Neural ODE fails to model this.

We implement differentiable event handling to build models
that learn when and how to apply instantaneous interventions.

Differentiable Event Handling

Define event function g(z , t). Event defined as when
trajectories cross the root, i.e. t∗ s.t. g(z(t∗), t∗) = 0.

t∗, z(t∗) = ODESolveEvent(z0, f , g , t0, θ, φ) (1)

Solves dz
dt = f (z , t, θ) with initial state (z0, t0) until event t∗.

Gradient of ODESolveEvent can be derived
by combining implicit function theorem and
adjoint method (see paper for details).

Efficient O(1)-memory gradient implemented
in github.com/rtqichen/torchdiffeq.

Neural Event ODE

Repeat: (i) solve until event, (ii) update state instantaneously.

while ti < T do

(i) ti+1, z
′
i+1 = ODESolveEvent(zi, f , g , ti)

(ii) zi+1 = h(ti+1, z
′
t+1)

end while

Capable of modeling variable number of discontinuities.

z(t)

t

Switching Linear Dynamical System

(a) Ground truth (b) RNN (LSTM) (c) Neural ODE (d) Neural Event ODE

Figure: A Neural Event ODE jumps between a set of linear dynamics using
only gradients. (Colors denote which linear system, not event boundaries.)

Modeling Physics with Collision

(a) Ground truth (b) RNN (LSTM) (c) Neural ODE (d) Neural Event ODE

Moreover, Neural ODE baseline approximates collisions with
stiff trajectories, requiring 10× more compute to solve.

Threshold-based Event Functions

Threshold-based event occurs when an integral over a positive
function reaches a predetermined threshold.

t∗ such that s =

∫ t∗

t0

λ(t) dt (2)

where λ(t) > 0. Implemented by tracking Λ(t) ,
∫ t
t0
λ(s)ds as

part of the ODE state and using g(t, z(t)) = s − Λ(t).

Allows exact gradients for integrate-and-fire spiking neural
nets, inverse sampling, temporal point processes (TPP), etc.

Differentiable Sampling for TPPs

Sampling from a temporal point process (repeat):
(i) sample si ∼ Exp(1)
(ii) solve for ti such that si =

∫ ti
ti−1
λ(t)dt

Differentiable event handling through step (ii) provides the
reparameterization gradient for temporal point processes.

0 200 400 600 800 1000 1200 1400 1600
Iteration

0

10

20

30

Re
ve

rs
e 

KL

REINFORCE
Reparam gradient

Figure: Reverse-KL Training

0 50 100 150 200 250
Iteration

5000

0

5000

10000

Re
wa

rd

REINFORCE
Reparam gradient
Deterministic

Figure: Discrete-valued Control

0 10 20 30 40 50
Time

0

20

40

60

80

100

In
pu

t C
ur

re
nt

0 10 20 30 40 50
Time

0

20

40

60

80

100

Ac
tio

n 
Po

te
nt

ia
l

Figure: Visualization of a discrete-valued control (left) in a continuous-time
environment (right), using the Hodgkin-Huxley model of neuronal dynamics.

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq

