Neural Ordinary Differential Equations

VECTOR ‘s
Ricky T. Q. Chen™*, Yulia Rubanova®, Jesse Bettencourt®, David Duvenaud TORONTO

INSTITUTE

UNIVERSITY OF

\

“*Equal Contribution University of Toronto, Vector Institute

Contributions

Black-box ODE solvers as a differentiable modeling component.

o Continuous-time recurrent neural nets and continuous-depth feedforward nets.

o Adaptive computation with explicit control over tradeoff between speed and
numerical precision.

o ODE-based change of variables for automatically-invertible normalizing flows. AT

e Open-sourced ODE solvers with O(1)-memory backprop:
https://github.com/rtqichen/torchdiffeq

Computing gradient for ODE solutions

O(1) memory cost when training.

Don't store activations, follow dynamics in reverse.

No backpropagation through the ODE solver — compute the gradient through
another call to ODESolve.

Define adjoint state:

a(t) = —9L/oz(1)

Z(tN)

Adjoint state dynamics:
State a“)__

Continuous Normalizing Flows (CNF)

Automatically-invertible Normalizing Flows.
Planar CNF is smooth and much easier to train than planar NF.

Planar normalizing flow Continuous analog of planar flow

(Rezende and Mohamed, 2015)

z(t +1) = z(t) + vh(w'z(t) + b) dfd—@ = uh(w'z(t) + b)

log p(z(t + 1)) = log p(z(t)) b = —u' oy
— log ‘1 + UT%

_a(t)@f(z(t),tﬂ)

Adjoint State dt Oz

a(to) 9z(t;) E\/x o 5(y
oL, x Y BT a(tn) _ _ 0
Tatta \/f Patts) 2 . Solve ODE backwards in time: |

| 0z (tw) dl. ftl a(t)Taf(Z(t),t,e) dt

ODE Solvers: How Do They Work?

20% 40% 60% 80% 100%

100% 5%

20% 40% 60% 80%

e z(t) changes in time, defines an infinite set of trajectories. b ' t o o dg — Ji 90
: : . . dz _
o Define a differential equation: 7 = f(z(t), t,0). dof £ and a([z,a,gradl,)

return [f, -a*xdf/da, -a*xdf/d thetal

o Initial-value problem: given z(ty), find z(t1) = z(ty) + tzl f(z(t),t,0).
o Approximate solution with discrete steps, e.g. z(t + h) = z(t) + hf(z, t).

[z0, dL/dx, dL/d thetal] =
ODESolve(f_and_a, [z(t1), dL/dz(t), 0], t0, t1)

(a) Two Circles (b) Two Moons

e Higher-order solvers are more accurate and use larger step sizes.

o Can adapt step size h given error tolerance level.

Figure: Visualizing the transformation from noise to data. Continuous normalizing flows are
efficiently reversible, so we can train on a density estimation task and still be able to sample from the
learned density efficiently.

NN 7 / Q32] 2% 28

ODE Nets for Supervised Learning

Continuous version of ResNets

Adaptive computation: can adjust speed vs precision.
We can specify the error tolerance of ODE solution:

ODESolve(fy, z(ty), to, t1, 8, rtol, atol)

Cas®, ~ ‘.,1P ,!.,I_q j_..‘ e
ODE-Net replaces ResNet blocks with ODESolve(f, z(ty), to, t1,6), where f is a =D, | S SR L

neural net with parameters 6.

ty
z(t1) = z(to) +/ f(z(t),t,0)dt = ODESolve(z(ty), f, ty, t1, 0) —— 1“0, =™ il
t ~S le-1 2 > : lel 2 = 150
9-1 (© 100 (© =
Residual Network ODE-Net T : 2 T S e s
D s le-3+ 3= ‘ le3 ¥ g
Output Output qg:) 10 Ile_4§ G % . ,,» s 8 100 Time series with irregular observation times.
> T z(1) = sl A N i L& I1 s W No discretization of the timeline is needed.
-0 50 100 150 0 50 100 150 © 0 25 50 75 100
forward evals # forward evals training epoch ODE Solve(zy,, f,0f,to, -, tar)
RNN encoder q(2t |Tpy o Tiy) TTHTTTTTTTTTT T |
4 ¢ 0170 N | Aty REN4+1 o |
Performance on MNIST fitg i, ity] “to “tN 2
o —~0—l-d 6 _ g B0
c + Test Error # Params Memory Time ! A A g R | D
= 3 + - o ! , i Latent space s it P A-————— A-—~
o s 1-Layer MLP 1.60% 0.24 M - - ; i —Data space . | | - -
2 T ResNet 041% 060M O(L) O(L) ' ! ey M
5 +¢“ - RK-Net 047% 022M O(L) O(L) Time w. - : z(t) e .
0 T @ o0 — o—0—
ODE-Net 042% 022M ©O(1) O(I) M e o Y o i iy
- > <+—> < > < >
1 Tf 7 Observed Unobserved Prediction Extrapolation
Instantaneous Change of Variables
O Z(O) === Ground Truth
-5 0 5 Change of variables theorem to compute exact changes in probability of samples ® Observation
—Freaiction
Input transformed through bijective F: —— Extrapolation
OF
h;y1 = he+ f(h, 0;) zy =29+ f(z0) = logp(z1) — log p(z0) = — log |det —— '
0z Recurrent Neural Network Latent ODE Latent space

ResNet

def resnet(x, 0):
hl = x + NeuralNet(x, 6[0])
h2 = hl + NeuralNet(hl, 6[1])
h3 = h2 + NeuralNet (h2, 6[2])
h4d = h3 + NeuralNet (h3, 6[3])
return h4

ODE-Net

def f(z, t, 0):
return NeuralNet ([z, t], 6)

Figure: Latent ODE learns smooth latent dynamics from noisy observations.

Requires invertible F. Cost O(D?3).

Theorem: Assuming that f is uniformly Lipschitz continuous in z and continuous
In t, then:

dz O log p(z(t)) df
- = f(z(t),t) = 5 = —tr (dz(t))

Function f does not have to be invertible. Cost O(D?).

Prior Works on ODE+4DL

def ODEnet (x, 0):
return 0DESolve(f, x, 0, 1, 6)

_eCun. "A theoretical framework for back-propagation.” (1988)
Pearlmutter. " Gradient calculations for dynamic recurrent neural networks: a survey.” (1993)

Haber & Ruthotto. "Stable Architectures for Deep Neural Networks.” (2017)
Chang et al. " Multi-level Residual Networks from Dynamical Systems View.” (2018)

‘Depth’ is automatically chosen by an adaptive ODE solver.

https://github.com/rtqichen/torchdiffeq

