Neural Ordinary Differential Equations
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Black-box ODE solvers as a differentiable modeling component.

o Continuous-time recurrent neural nets and continuous-depth feedforward nets.

o Adaptive computation with explicit control over tradeoff between speed and
numerical precision.

o ODE-based change of variables for automatically-invertible normalizing flows. AT

e Open-sourced ODE solvers with O(1)-memory backprop:
https://github.com/rtqichen/torchdiffeq

Computing gradient for ODE solutions

O(1) memory cost when training.

Don't store activations, follow dynamics in reverse.

No backpropagation through the ODE solver — compute the gradient through
another call to ODESolve.

Define adjoint state:
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Adjoint state dynamics:
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Continuous Normalizing Flows (CNF)

Automatically-invertible Normalizing Flows.
Planar CNF is smooth and much easier to train than planar NF.

Planar normalizing flow Continuous analog of planar flow

(Rezende and Mohamed, 2015)
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ODE Solvers: How Do They Work?
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e z(t) changes in time, defines an infinite set of trajectories. b ' t o o dg — Ji 90
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o Define a differential equation: 7 = f(z(t), t,0). dof £ and a([z,a,gradl, )

return [f, -a*xdf/da, -a*xdf/d thetal

o Initial-value problem: given z(ty), find z(t1) = z(ty) + tzl f(z(t),t,0).
o Approximate solution with discrete steps, e.g. z(t + h) = z(t) + hf(z, t).

[z0, dL/dx, dL/d thetal] =
ODESolve(f_and_a, [z(t1), dL/dz(t), 0], t0, t1)

(a) Two Circles (b) Two Moons

e Higher-order solvers are more accurate and use larger step sizes.

o Can adapt step size h given error tolerance level.

Figure: Visualizing the transformation from noise to data. Continuous normalizing flows are
efficiently reversible, so we can train on a density estimation task and still be able to sample from the
learned density efficiently.
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ODE Nets for Supervised Learning

Continuous version of ResNets

Adaptive computation: can adjust speed vs precision.
We can specify the error tolerance of ODE solution:

ODESolve(fy, z(ty), to, t1, 8, rtol, atol)
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ODE-Net replaces ResNet blocks with ODESolve(f, z(ty), to, t1,6), where f is a =D, | S SR L

neural net with parameters 6.
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ResNet

def resnet(x, 0):
hl = x + NeuralNet(x, 6[0])
h2 = hl + NeuralNet(hl, 6[1])
h3 = h2 + NeuralNet (h2, 6[2])
h4d = h3 + NeuralNet (h3, 6[3])
return h4

ODE-Net

def f(z, t, 0):
return NeuralNet ([z, t], 6)

Figure: Latent ODE learns smooth latent dynamics from noisy observations.

Requires invertible F. Cost O(D?3).

Theorem: Assuming that f is uniformly Lipschitz continuous in z and continuous
In t, then:

dz O log p(z(t)) df
- = f(z(t),t) = 5 = —tr (dz(t))

Function f does not have to be invertible. Cost O(D?).

Prior Works on ODE+4DL

def ODEnet (x, 0):
return 0DESolve(f, x, 0, 1, 6)
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‘Depth’ is automatically chosen by an adaptive ODE solver.


https://github.com/rtqichen/torchdiffeq

