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Contributions

Black-box ODE solvers as a differentiable modeling component.

• Continuous-time recurrent neural nets and continuous-depth feedforward nets.

• Adaptive computation with explicit control over tradeoff between speed and
numerical precision.

• ODE-based change of variables for automatically-invertible normalizing flows.

• Open-sourced ODE solvers with O(1)-memory backprop:
https://github.com/rtqichen/torchdiffeq

ODE Solvers: How Do They Work?

• z(t) changes in time, defines an infinite set of trajectories.

• Define a differential equation: dz
dt = f (z(t), t, θ).

• Initial-value problem: given z(t0), find z(t1) = z(t0) +
∫ t1
t0
f (z(t), t, θ).

• Approximate solution with discrete steps, e.g. z(t + h) = z(t) + hf (z, t).

• Higher-order solvers are more accurate and use larger step sizes.

• Can adapt step size h given error tolerance level.

Continuous version of ResNets

ODE-Net replaces ResNet blocks with ODESolve(f , z(t0), t0, t1, θ), where f is a
neural net with parameters θ.

z(t1) = z(t0) +

∫ t1

t0

f (z(t), t, θ)dt = ODESolve(z(t0), f , t0, t1, θ)

Residual Network ODE-Net
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ht+1 = ht + f (ht, θt)
dh(t)
dt = f (h(t), t, θ)

ResNet ODE-Net
def resnet(x, θ):

h1 = x + NeuralNet(x, θ[0])

h2 = h1 + NeuralNet(h1, θ[1])

h3 = h2 + NeuralNet(h2, θ[2])

h4 = h3 + NeuralNet(h3, θ[3])

return h4

def f(z, t, θ):

return NeuralNet ([z, t], θ)

def ODEnet(x, θ):

return ODESolve(f, x, 0, 1, θ)

‘Depth’ is automatically chosen by an adaptive ODE solver.

Computing gradient for ODE solutions

O(1) memory cost when training.
Don’t store activations, follow dynamics in reverse.
No backpropagation through the ODE solver – compute the gradient through
another call to ODESolve.

Adjoint State
State

Define adjoint state:
a(t) = −∂L/∂z(t)

Adjoint state dynamics:
a(t)
dt = −a(t)∂f (z(t),t,θ)

∂z

Solve ODE backwards in time:
dL
dθ =

∫ t1
t0
a(t)T ∂f (z(t),t,θ)

∂θ dt

def f_and_a ([z,a,grad], t):

return [f, -a*df/da , -a*df/d theta]

[z0 , dL/dx , dL/d theta] =

ODESolve(f_and_a , [z(t1), dL/dz(t), 0], t0, t1)

ODE Nets for Supervised Learning

Adaptive computation: can adjust speed vs precision.
We can specify the error tolerance of ODE solution:

ODESolve(fθ, z(t0), t0, t1, θ, rtol , atol)
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Performance on MNIST

Test Error # Params Memory Time

1-Layer MLP 1.60% 0.24 M - -
ResNet 0.41% 0.60 M O(L) O(L)

RK-Net 0.47% 0.22 M O(L̃) O(L̃)

ODE-Net 0.42% 0.22 M O(1) O(L̃)

Instantaneous Change of Variables

Change of variables theorem to compute exact changes in probability of samples
transformed through bijective F :

z1 = z0 + f (z0) =⇒ log p(z1)− log p(z0) = − log

∣∣∣∣det
∂F

∂z0

∣∣∣∣
Requires invertible F . Cost O(D3).

Theorem: Assuming that f is uniformly Lipschitz continuous in z and continuous
in t, then:

dz

dt
= f (z(t), t) =⇒ ∂ log p(z(t))

∂t
= −tr

(
df

dz(t)

)
Function f does not have to be invertible. Cost O(D2).

Continuous Normalizing Flows (CNF)

Automatically-invertible Normalizing Flows.
Planar CNF is smooth and much easier to train than planar NF.

Planar normalizing flow Continuous analog of planar flow
(Rezende and Mohamed, 2015)

z(t + 1) = z(t) + uh(wTz(t) + b) dz(t)
dt = uh(wTz(t) + b)

log p(z(t + 1)) = log p(z(t)) ∂ log p(z(t))
∂t = −uT ∂h

∂z(t)

− log
∣∣1 + uT∂h

∂z

∣∣
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Figure: Visualizing the transformation from noise to data. Continuous normalizing flows are
efficiently reversible, so we can train on a density estimation task and still be able to sample from the
learned density efficiently.

Samples

Data

Figure: Have since scaled CNFs to images using Hutchinson’s estimator (Grathwohl et al. 2018).

Continuous-time Generative Model for Time Series

Time series with irregular observation times.
No discretization of the timeline is needed.
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Figure: Latent ODE learns smooth latent dynamics from noisy observations.
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