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N Meta Al
Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel

Experiments

Main Takeaways Bijective Mapping to Convex Supports

Differentiable tessellation + bijective mapping to Parameterize Voronoi tessellation using anchor points.

construct normalizing flows on bounded supports.

Can model complex relations between discrete data.

Bijective map through 1D transformation: Learns to cluster discrete values with similar probabilities.

Maps between discrete & continuous distributions.
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Generalizes existing dequantization methods. ¢  \ T~ __-- e e
Disjoint mixture models with O(1) compute cost. . . . -
Anchor pt. Xk ' ‘.
——- Ray X(A) \ r R L f
What? % Intersection x(A ™) - . -
B Output fi(x) -t ) “ » w3
Distributions with bounded SUppOo rt. Target PMF Discrete Flow Voronoi Flow Dequantized samples
f Log probability is easy to compute in closed form.
= —x 1 - L
Of ()| Beats existing dequantization approaches across many

Why?

p=(f(x)) = pz(x)

det

ox

VVoronoi Dequantization (Discrete Data)

Learns the map from discrete to continuous.

Does not couple dimension with
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Table 1: Discrete UCI data sets. Negative log-likelihood results on the test sets in nats.

Method Connect4 Forests Mushroom Nursery PokerHands USCensus90
Voronoi Deq. 12.92+007 14.20+0.05 9.06+005 9.27+0.04 19.86+0.04 24.19+0.12
Simplex Deq. 13.46+001 16.58+0.01 9.26+001  9.50-+0.00 19.90-+0.00 28.09+0.08
BinaryArgmax Deq. 13.71+004 16.73+0.17 9.53+001  9.49+0.00 19.90-+0.01 27.23+0.02
Discrete Flow 19.80+001 21.91+o0.01 22.06+001  9.53+0.01 19.82+0.03 55.62+035

Table 2: Permutation-invariant discrete itemset modeling. = Table 3: Language modeling.

Model (Dequantization) Retail (nats) Accidents (nats) Dequantization text8 (bpc) enwik8 (bpc)
. Voronoi (D=2) 1.39+0.01 1.46+0.01

CNEF (Voronoi) 944234 781428 Voronoi (D=4) 1.37000 1412000
CNF (Simplex) 24.16+021 19.19+001 Voronoi (D=6) 1.37+000 1.40+000
CNF (BinaryArgmax) 10.47 +0.42 6.72+023 Voronoi (D=8) 1.36z000  1.39+001
Determinantal Point Process 20.35+00s 15.78+0.04 Binary Argmax [18] 1.38 1.42
Ordinal [18] 1.43 1.44
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Maps each continuous value to a discrete value.
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Maps each discrete value to a continuous distribution.
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Disjoint Mixture Modeling (Continuous Data)

Mixture models are expensive:

of components

K < {Scales with numberJ

p(x) = ) p(x|k)p(k)

But if components are disjoint:

p(®) =) Ligea,p(e|k)p(k)

function

Set identification}

k=1
= p(x|k = g(x))p(k = g(x))

Disjoint mixture modeling increases flexibility at no cost.
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Figure 6: Tessellation is done in a transformed space; nonlinear boundaries are shown.

Table 4: Disjoint mixture modeling. NLL on the test sets in nats. *Baseline results from [13, 35].

Method POWER GAS HEPMASS MINIBOONE BSDS300
Real NVP* -0.17+001  -8.33+0.07 18.71+0.01 13.55+026 -153.28+0.89
MAF* -0.24+0.01 -10.08+0.01 17.73+0.01 12.24+022 -154.93+0.14
FFJORD* -0.46+001  -8.59+0.12 14.92+0.08 10.434+022 -157.40+0.19
Base Coupling Flow 0441001 -11.75+002  16.78+008  10.87+006 -155.14-+004
Voronoi Disjoint Mixture -0.52+0.01 -12.63+0.05 16.16+0.01 10.2440.14 -156.59+0.14




