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Pathways to Designing a Normalizing Flow

1. Require an invertible architecture.

- Coupling layers, autoregressive, etc.

2. Require efficient computation of a change of variables equation.

log p(z) = log p(f(z)) + log |det L}~ l

dax
<Model distribution> <Base distribution>
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Pathways to Designing a Scalable Normalizing Flow
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Pathways to Designing a Scalable Normalizing Flow

1. Det Identities 2. Coupling Blocks 3. Autoregressive
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Pathways to Designing a Scalable Normalizing Flow

1. Det Identities 2. Coupling Blocks
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Unbiased Estimation — Flow-based Model

Benefits of Flow-based Generative Models:

- Trainable with either the reverse- or forward-KL (a.k.a. maximum likelihood).
- Generally possible to sample from the model.

Maximum Likelihood Training:

Stochastic

Gradients veEprdata(CC) [lOg p9 (ZIZ')] — Ea?fvpdata(x) [VQ 10gp9 (ZIZ')]

Log-

Likelihood  10g pg(x) = log p(f(x)) + log ‘det df‘g(m)




Invertible Residual Networks (i-ResNet)

It can be shown that residual blocks

y=f(x) =2+ g(z)

can be inverted by fixed-point iteration

and has a unique inverse (ie. invertible)

if
Lip(g) <1

Standard ResNet Invertible ResNet
Output Output

Depth

Input Input

(Behrmann et al. 2019)



Satisfying Lipschitz Condition on g(x)
Parametering g(x) as a deep neural network with pre-activation:

21 = Wihi—1 + by and hy = ¢(2)
The Lipschitz constant of g(x) can be expressed as:

| Jg(@)l]2 = [[WL ... W2/ (21) W16 (22)][2
<|[Wellz- - [[Wall2 [|¢'(20) ]2 [[Wall2 [ (22)l2

1. Choose Lipschitz-constrained activation functions ¢'(z) < 1.
2. Bound the spectral norm of weight matrices.

(Behrmann et al. 2019)



Applying Change of Variables to i-ResNets

' y = f(z) = + g(x)

Then

log p(x) = log p(f(x)) it

log p(z) = log p(f(x)) + 2, St ([, («)]F)

(Behrmann et al. 2019)



Applying Change of Variables to i-ResNets

oy
tr (Zzozl ( 1,1 M [Jg(w)]k) - Skilling-Hutchinson

' trace estimator:
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(Behrmann et al. 2019)



Decoupling Training Objective and Bias
The i-ResNet used a biased estimator of the log-likelihood.

n (_1)k+1 -

k — (—1)F*! k
E, L@ o (Y (@)
R k=1 | k=n+1 )
biased ;gtimator b‘i;s d
= O(l—Lip



Decoupling Training Objective and Bias

The i-ResNet used a biased estimator of the log-likelihood.
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biased estimator bias

This bias is large when:
- Scaling to higher dimensional data.
- The Lipschitz constant of network is large.



Decoupling Training Objective and Bias

The i-ResNet used a biased estimator of the log-likelihood.
k+1

n 00 1\k+1
B, |3 T (@) +tr< y G [Jg<a:>]’f>

< k‘:l > k:n+1

biased estimator bias

This bias is large when:
- Scaling to higher dimensional data.
- The Lipschitz constant of network is large.

Thus, requires carefully trading off between bias and expressiveness.



Decoupling Training Objective and Bias

Enter the “Russian roulette” estimator (Kahn, 1955). Suppose we want to estimate
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Decoupling Training Objective and Bias

Enter the “Russian roulette” estimator (Kahn, 1955). Suppose we want to estimate

o0 | N,
Zk:1 Ay (Require Y ;= |Ag| < 00)
Flip a coin b with probability g.

E [Al + {%_q D k2 Ak} Iy—o + [0]]11921}

= Ay + {rlq D k2 Ak] (1—gq)
— 213021 A



Decoupling Training Objective and Bias

Enter the “Russian roulette” estimator (Kahn, 1955). Suppose we want to estimate

o0 | N,
Zk:1 Ay (Require D 2 [Ag| < 00)
Flip a coin b with probability q.

E [Al + {%_q D k2 Ak} ly—0 + [0]]15;:1}

= A1+ [rlq D k=2 Ak] (1—q)

— ZOO A Has probability q of being
k=1 =k evaluated in finite time.



Decoupling Training Objective and Bias

If we repeatedly apply the same procedure infinitely many times, we obtain an
unbiased estimator of the infinite series.

D k1 Ak = Eep(v) {Zk 1 P(N>k)] ( Computed in |
finite time
with prob. 1!!
\_ v,




Decoupling Training Objective and Bias

If we repeatedly apply the same procedure infinitely many times, we obtain an

unbiased estimator of the infinite series.

2 =1 Bk = Epop(vy [Zk 1 IP’(N>I~c)] :

Directly sample the first
successful coin toss.
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Decoupling Training Objective and Bias

If we repeatedly apply the same procedure infinitely many times, we obtain an

unbiased estimator of the infinite series.

2 =1 Bk = Epop(vy [Zk 1 IP(N>k)] :

Directly sample the first k-th term is weighted by
successful coin toss. prob. of seeing >= k tosses.

Residual Flow:

)
Computed in

finite time
with prob. 1!!

\_ J

n — 1)L T[T, (2)]F
logp(gj) — logp(f(x)) + En,’u |: k=1 ( 1I)c J[(i(“;i]) }



Decoupling Training Objective and Bias
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Decoupling Training Objective and Bias
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Dealing with Variable Memory Usage

En,v [ZZZl Ob/va [Jg (Qj)] kv}

- (’_ l)kt—l—],

O = L



Dealing with Variable Memory Usage

En,’v [22’21 C“va[Jg(aj)]k/U} Ok = (—1/);+1 IP(Nle)
Naive gradient computation:

[P & k 1
n Ovt [Jg(x)]" v 1. Estimate
En,v |:Zk:]‘ Oék 2. Differentiate




Dealing with Variable Memory Usage

n T k _ (=D g
Enw [Dhey rv” [Jg(@)]0] o= S0y
Naive gradient computation:
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Alternative (Neumann series) gradient formulation:
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Dealing with Variable Memory Usage

n T k _ (=D g
Enw [Dhey rv” [Jg(@)]0] o= S0y
Naive gradient computation:
n T [Ty ()] v 1. Estimate
En,v {Zkzl Ok 50 2. Differentiate

Alternative (Neumann series) gradient formulation:

T k\ OJg(x) 1. Analyticall
En,v {(2221 Qv [Jg(ilj)] ) : ?ﬁ?ff}x U} Diﬁ;riztilg’?ey
2. Estimate

[ Don’t need to store random number of terms in memory!! ]




Dealing with Variable Memory Usage
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Gradient Saturation of Lipschitz Act Fns

Log-likelihood depends on first-order derivatives.

Gradient depends on second-order derivatives.

1.0

0.5
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— Lipschitz activation functions have bounded derivative.

— Lipschitz activation fns can lead to “gradient saturation”.
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Gradient Saturation of Lipschitz Act Fns

Log-likelihood depends on first-order derivatives.
— Lipschitz activation functions have bounded derivative.

Gradient depends on second-order derivatives.
— Lipschitz activation fns can lead to “gradient saturation”.

(because Swish(z) < 1.1 -

LipSwish(x) = Swish(z)/1.1 = o(Bz)x

0.5 1

0.0

(Ramachandran et al., 2017) LipSwish



Generalizing i-ResNet and Spectral Normalization

Recall

1 Jg(@)l]2 = [[WL ... W2 (2) W16 (22)] |2
< [[WLllz-- - [[Wall2 1§/ (z0)l]2 [Wall2 [|¢'(z2)]]2



Generalizing i-ResNet and Spectral Normalization

Recall

1 Tg(@)llp = [[WL ... Wad' (21) W16’ (22)]
< [Wellp - IWallp 16" z)Ilp Wl |16 (z2)]],

A
|Allp = sup, [l



Generalizing i-ResNet and Spectral Normalization

Recall

1 Tg(@)llp = [[WL ... Wad'(21) W16’ (22)]
< Wellp - [IWallp 16" (z)llp [[Wallp |16 (z2)]]p

A
1 A][pq = SuD,0 [l



Generalizing i-ResNet and Spectral Normalization

Recall

| Tg(@)|lp = [|[WL ... Wad' (21) W16 (22)] ],
< HW1HP—>Z91 HW2Hp1—>p2 s HWLHPL—1—>P

A
1 A][pq = SuD,0 [l

Power iteration for mixed norms;
(Johnston, “QETLAB.” 2016)



Generalizing i-ResNet and Spectral Normalization

Learn the norm orders p’s and g’s!
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Figure 2: Lipschitz constraints with different induced matrix norms.

Power iteration for mixed norms;
(Johnston, “QETLAB.” 2016)



Density Estimation Experiments

Contribution Summary:

- [Residual Flow] Unbiased estimator of log-likelihood.

- Memory-efficient computation of log-likelihood.

- LipSwish activation function.

Table 2: Results [bits/dim] on standard benchmark datasets for density estimation. In brackets are
models that used “variational dequantization” (Ho et al., 2019), which we don’t compare against.

Model MNIST  CIFAR-10 ImageNet 32x32 ImageNet 64 x 64
Real NVP (Dinh et al., 2017) 1.06 3.49 4.28 3.98

Glow (Kingma and Dhariwal, 2018) 1.05 335 4.09 3.81

FFJORD (Grathwohl et al., 2019) 0.99 3.40 — —

Flow++ (Ho et al., 2019) — 3.29(3.09) — (3.86) — (3.69)
1-ResNet (Behrmann et al., 2019) 1.05 3.45 — —

Residual Flow (Ours) 0.97 3.29 4.02 3.78




Density Estimation Experiments

Contribution Summary:
- [Residual Flow] Unbiased estimator of log-likelihood.
- Memory-efficient computation of log-likelihood.
- LipSwish activation function.

3.50

pas| —— sofipus |  Training Setting MNIST CIFAR-10"  CIFAR-10
E -=- ELU
S — vpswish | i-ResNet + ELU 1.05 3.45 3.66~4.78
2 3 30 mmessemenl Residual Flow + ELU 1.00 3.40 3.32
3255 =5 100 150 300 %0 300 Residual Flow + LipSwish 0.97 3.39 3.29

Figure 5: Effect of activation func- Table 3: Ablation results.
tions on CIFAR-10.



Qualitative Samples
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Joint Generative and Discriminative Representations

Coupling blocks have difficulty learning both a generative model and a
discriminative classifier.

Following Nalisnick et al. (2019), we train using weighted maximum likelihood.

(2 ) ~panes LN 108 Do () + log po(y|z)]




Joint Generative and Discriminative Representations

Hybrid models using weighted maximum likelihood:

E(2 0)~paaca [N 108 Do(z) + 1og po(y|)]

Table 4: Comparison of residual vs. coupling blocks for the hybrid modeling task.

MNIST SVHN
results on CIFAR-10.
A=0 A=1p A=1 A=0 A=1p A=1
Block Type Acct  BPD| Acct BPD| Acct Acct  BPD| Acct BPD| Acct | A=0 A=1/p A=1
Nalisnick et al. (2019) 99.33% 126 97.78%  — — 95.74% 240 9%4.77% — - Acct  BPD] Acct BPD| Acct
Coupling 99.50% 118 9845% 104 9542%  9627% 273 95.15% 221 4622%| 89.77%  4.30 87.58%  3.54 67.62%

+1 x 1 Conv 99.56% 1.15 98.93%  1.03 94.22% 96.72%  2.61 9549%  2.17 46.58%| 90.82% 4.09 87.96% 3.47 67.38%
Residual 99.53%  1.01 99.46% 099 98.69%  96.72%  2.29 95.719%  2.06 58.52%)| 91.78%  3.62 90.47%  3.39 70.32%




Summary of Residual Flows

An approach to flow-based modeling requiring only Lipschitz constraints.

- Unbiased estimate of log-likelihood.

- Memory-efficient training.

- LipSwish for 1-Lipschitz activation function.
- Generalized spectral normalization.

Det Identities Coupling Autoregressive Free form
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Thanks for Listening!
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