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ARTISTIC STYLE TRANSFER STYLE SWAP : PATCH-BASED STYLE TRANSFER

Task: redrawing any photo in the style of any painting. For every content patch, swap it with the best matching style
= Artists take days or months to create a painting patch, which we define using the normalized cross-correlation:
" Can a computer transfer the style of an image onto another? <C, 8§ >
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INTRODUCTION

The use of an

" But the current approaches are either slow (optimization-
based) or limited in the number of styles (trained style

network). This operation can be implemented efficiently using a 2D

convolutional layer and a 2D transposed convolutional layer.
" We present an approach that is both efficient and adaptable to

any style. Content Target

= We train on 80,000 natural images and 80,000 paintings. Activations . Activations
Channel-wise

OUR APPROACH

" We restrict to using only one layer of the pretrained CNN.

" We isolate the stylizing process inside its own module. N -~ y - — Y
" The style-swapped activations can be by either 2D Convolution 2D Transposed Convolution
or an With Normalized Style With Style Patches
Patches as Filters as Filters

Invert Activations

SIMPLE & INTUITIVE TUNING PARAMETER

Patch size of the style swap procedure is an intuitive parameter
for changing the degree of abstraction.

CONSISTENCY - FEW LOCAL OPTIMA

= Compared with other optimization approaches, our approach
has much fewer local optima.

" QOptimization procedure always converges to the same result.

" Allows consistent frame-by-frame performance on videos.
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