
Residual Flows for Invertible Generative Modeling
Ricky T. Q. Chen1,3, Jens Behrmann2, David Duvenaud1,3, Jörn-Henrik Jacobsen1,3

University of Toronto1, University of Bremen2, Vector Institute3

Residual Flows are ...

Highly scalable invertible generative model that allows free-form
Jacobian and make use of unbiased log-likelihood.

(a) Det. Identities
(Low Rank)

(b) Autoregressive
(Lower Triangular)

(c) Coupling
(Structured Sparsity)

(d) Unbiased Est.
(Free-form)

Background: Invertible Generative Models

Maximum likelihood estimation. To perform maximum likelihood
with stochastic gradient descent, we require estimating

∇θEx∼pdata(x) [log pθ(x)] = Ex∼pdata(x) [∇θ log pθ(x)] (1)
Change of Variables. With an invertible transformation f , we can

build a generative model
z ∼ p(z), x = f −1(z). (2)

Then the log-density of x is given by

log p(x) = log p(f (x)) + log

∣∣∣∣det
df (x)

dx

∣∣∣∣ . (3)

Flow-based generative models can be

1. sampled, if (2) can be computed with arbitrary precision.

2. trained using maximum likelihood, if (3) can be unbiasedly estimated.

Background: Invertible Residual Networks

Residual networks are composed of simple transformations
y = f (x) = x + g(x) (4)

Behrmann et al. (2019) proved if g has Lipschitz strictly less than one,
then the residual transformation (4) is invertible.
Sampling. The inverse f −1 can be computed by a fixed-point iteration

x (i+1) = y − g(x (i)) (5)

which converges superlinearly by the Banach fixed-point theorem.
Log-likelihood. The change of the variables can be applied.

log p(x) = log p(f (x)) + tr

 ∞∑
k=1

(−1)k+1

k
[Jg(x)]k

 (6)

The infinite series is intractable to exactly compute.
Fixed truncation creates a biased training objective.

Unbiased Log-likelihood via “Russian Roulette”

Russian roulette estimator. Used for estimating infinite series.
∞∑
k=1

∆k = En∼p(N)

 n∑
k=1

∆k

P(N ≥ k)

 (7)

Residual Flows. Unbiased estimation of the log-likelihood leads to our
training objective. Easily trains with maximum likelihood.

log p(x) = log p(f (x)) + En,v

 n∑
k=1

(−1)k+1

k

vT [Jg(x)k]v

P(N ≥ k)

 , (8)

where n ∼ p(N) and v ∼ N (0, I ). We use a shifted geometric
distribution for p(N) with an expected compute of 4 terms.

Compared to fixed truncation, this
• Allows making use of big networks and high Lipschitz constants.
• Allows training with higher dimensions (from 32×32 to 256×256).

Memory-efficient Gradient Estimation

Neumann gradient series. For estimating (1), we can either

(i) Estimate log p(x), then take gradient.

(ii) Analytically compute the gradient power series, then estimate it.

The first option uses variable amount of memory as n is stochastic.
The second option, by using a Neumann series we obtain constant
memory cost:

∂

∂θ
log

∣∣∣∣det
df (x)

dx

∣∣∣∣ = En,v

 n∑
k=0

(−1)k

P(N ≥ k)
vTJ(x , θ)k

 ∂(Jg(x , θ))

∂θ
v


Now tractable to train with large networks.

0 5 10 15 20 25 30

Epoch

2.5

3.0

3.5

4.0

4.5

B
it

s/
di

m
on

C
IF

A
R

-1
0

i-ResNet (Biased Train Estimate)

i-ResNet (Actual Test Value)

Residual Flow (Unbiased Train Estimate)

Residual Flow (Actual Test Value) MNIST CIFAR10-small CIFAR10-large
0

50

100

150

200

250

M
em

or
y 

(G
B) 192.1

66.4

263.5

31.2
11.3

40.8
19.8

7.4
26.1

13.6 5.9
18.0

Naive Backprop
Neumann Series
Backward-in-forward
Both Combined

Density Modeling Benchmarks

Table: Results [bits/dim] on standard benchmark datasets for density estimation.

Model MNIST CIFAR-10 ImageNet 32 ImageNet 64 CelebA-HQ 256

Real NVP (Dinh et al., 2017) 1.06 3.49 4.28 3.98 —

Glow (Kingma & Dhariwal, 2018) 1.05 3.35 4.09 3.81 1.03

FFJORD (Grathwohl et al., 2019) 0.99 3.40 — — —

Flow++ (Ho et al., 2019) — 3.29 (3.09) — (3.86) — (3.69) —

i-ResNet (Behrmann et al., 2019) 1.05 3.45 — — —

Residual Flow (Ours) 0.970 3.280 4.010 3.757 0.992

We also show residual blocks > coupling blocks for joint
classification and generative modeling, ie. hybrid modeling.

Ablation Experiments

0 50 100 150 200 250 300
Epoch

3.25
3.30
3.35
3.40
3.45
3.50

Bi
ts

/d
im

Softplus
ELU
LipSwish

Training Setting MNIST CIFAR-10 CIFAR-10†

i-ResNet + ELU 1.05 3.45 3.66∼4.78

Residual Flow + ELU 1.00 3.40 3.32

Residual Flow + LipSwish 0.97 3.39 3.28

Table: Ablation results. †Larger network.

Qualitative Samples

Figure: Real (left) and random samples (right) trained on 5bit 64×64 CelebA.

T=0.7 T=0.8 T=0.9 T=1.0 T=0.7 T=0.8 T=0.9 T=1.0

References

Behrmann et al.. “Invertible residual networks.” (2019)
Kahn. “Use of different monte carlo sampling techniques.” (1955)
Beatson & Adams. “Efficient Optimization of Loops and Limits...” (2019)

Nalisnick et al.. “Hybrid Models with Deep and Invertible Features.” (2019)


