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Research Question Inference i1s Online Variance Reduction Unit Tests

Can we create a self-tuning optimizer by simply tracking more =~ With the gradient dynamics model, posterior inference 102) oD (1=0.00%
quantities during optimization, such as curvature and p(Vilg, ..., gt) (2) oo (e ) -
variance? (Instead of just minibatch gradient.) s equivalent to Kalman filtering. TE T — Ezt(a?'?op?;’)* )
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e Adaptive momentum-like parameter. m; = (I — Kiy)m, + K:g; (6) | | | |
o Uncertainty-aware adaptive step sizes. Po= (I — K)P(I — K)T + K.X,K] (7) (/e.ft) Conv_ergence guaranteed in noisy quadratic setting.
. . . (right) m; is closer to true gradient than g; on CIFAR-10.
Intuition regarding gradient update:

Gradient Dynamics Model momentum-like update.

More weight on new gradient observation if its variance is
relatively smaller.

Extra quantities can be used to diagnose training:

m; 1s a variance-reduced gradient estimator.

Automatic Step Size Selection
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Gradient Variance

Construct 1-D Gaussian process (in the direction of (5t)'
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Trade-off between minimization and uncertainty >
. . = om . @, 100
V|V~ N(Vf_1+ CQ:) 1) by choice of acquisition function. Aative <ten < | e b
aptive step sizes allow us to dive into high-variance
gt‘vﬂ“ ™ N(vﬂ‘zt) — —@®— Quadratic Mean/Std _ P X _ _ S _
S @ Expected Improvement high-curvature regions. It works, but not ideal for deep learning.
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- minibatch Hessian-vector produc

- minibatch Hessian-vector product variance 0 Fixes (maybe): better dynamics models, and planning.



