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Research Question

Can we create a self-tuning optimizer by simply tracking more
quantities during optimization, such as curvature and
variance? (Instead of just minibatch gradient.)

Our approach:
• Build gradient dynamics model, with quantities

estimated using automatic differentiation.
• Posterior inference provides low-variance gradient estimator.
• Adaptive momentum-like parameter.
• Uncertainty-aware adaptive step sizes.

Gradient Dynamics Model

Let δt−1 = θt − θt−1, then based on Taylor expansion:

∇ft|∇ft−1 ∼ N (∇ft−1 + Btδt−1,Qt)
gt|∇ft ∼ N (∇ft|Σt)

(1)

∇ft - expected / full batch gradient
gt - minibatch gradient
Σt - minibatch gradient variance
Btδt−1 - minibatch Hessian-vector product
Qt - minibatch Hessian-vector product variance

Inference is Online Variance Reduction

With the gradient dynamics model, posterior inference

p(∇ft|g1, . . . , gt) (2)

is equivalent to Kalman filtering.

Let ft|g1, . . . , gt ∼ N (mt,Pt), then mt and Pt are iteratively

m−t = mt−1 + Btδt−1 (3)
P−t = Pt−1 + Qt−1 (4)

Kt = P−t (P−t + Σt)
−1 (5)

mt = (I − Kt)m
−
t + Ktgt (6)

Pt = (I − Kt)P
−
t (I − Kt)

T + KtΣtK
T
t (7)

Intuition regarding gradient update:
Curvature-corrected momentum-like update.
More weight on new gradient observation if its variance is
relatively smaller.

mt is a variance-reduced gradient estimator.

Automatic Step Size Selection

Construct 1-D Gaussian process (in the direction of δt):

ft+1− ft | y1:t, g1:t, δ1:t︸ ︷︷ ︸
posterior belief of loss landscape

∼ N
(
αtδ

T
t mt +

α2
t

2
δTt Btδt︸ ︷︷ ︸

quadratic approximation

, α2
tδ

T
t Ptδt +

α4
t

4
δTt Qtδt︸ ︷︷ ︸

posterior variance of approximation

)
Trade-off between minimization and uncertainty
by choice of acquisition function.
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(left) Convergence guaranteed in noisy quadratic setting.
(right) mt is closer to true gradient than gt on CIFAR-10.

Dives into High-variance High-curvature

Extra quantities can be used to diagnose training:

Adaptive step sizes allow us to dive into high-variance
high-curvature regions. It works, but not ideal for deep learning.

Main issues are:
- Stochastic model parameters (Bt, Qt, and Σt).
- Local 1-D Gaussian process has short-horizon bias.

Fixes (maybe): better dynamics models, and planning.


