

Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering Ricky T. Q. Chen^{*,1}, Dami Choi^{*,1}, Lukas Balles^{*,2}, David Duvenaud¹, Philipp Hennig²

Research Question

Can we create a self-tuning optimizer by simply tracking more quantities during optimization, such as curvature and **variance**? (Instead of just minibatch gradient.)

Our approach:

- Build gradient dynamics model, with quantities estimated using automatic differentiation.
- Posterior inference provides low-variance gradient estimator.
- Adaptive momentum-like parameter.
- Uncertainty-aware adaptive step sizes.

Gradient Dynamics Model

Let $\delta_{t-1} = \theta_t - \theta_{t-1}$, then based on Taylor expansion:

 $\nabla f_t | \nabla f_{t-1} \sim \mathcal{N}(\nabla f_{t-1} + B_t \delta_{t-1}, Q_t)$ $\frac{g_t}{\nabla f_t} \sim \mathcal{N}(\nabla f_t | \Sigma_t)$

 ∇f_t - expected / full batch gradient g_t - minibatch gradient Σ_t - minibatch gradient variance $B_t \delta_{t-1}$ - minibatch Hessian-vector product Q_t - minibatch Hessian-vector product variance

*Equal contribution. ¹University of Toronto, Vector Institute. ²Max Planck Institute for Intelligent Systems, Tübingen.

Inference is Online Variance Reduction

With the gradient dynamics model, posterior inference $p(\nabla f_t | g_1, \ldots, g_t)$ (2)then m_t and P_t are iteratively (3)(4) (5)(6) $+ K_t g_t$ $(-K_t)^T + K_t \Sigma_t K_t^T$ (7)

Let
$$f_t | g_1, \dots, g_t \sim \mathcal{N}(m_t, P_t), t$$

 $m_t^- = m_{t-1} + B_t \delta_{t-1}$
 $P_t^- = P_{t-1} + Q_{t-1}$
 $K_t = P_t^- (P_t^- + \Sigma_t)$
 $m_t = (I - K_t) m_t^- - P_t = (I - K_t) P_t^- (I)$

is equivalent to Kalman filtering. Intuition regarding gradient update: Curvature-corrected momentum-like update. More weight on new gradient observation if its variance is relatively smaller.

 m_t is a variance-reduced gradient estimator.

Automatic Step Size Selection

Construct 1-D Gaussian process (in the direction of δ_t): $\underbrace{f_{t+1} - f_t \mid y_{1:t}, g_{1:t}, \delta_{1:t}}_{A_{t,t}} \sim \mathcal{N}\left(\alpha_t \delta_t^T m_t + \frac{\alpha_t^2}{2} \delta_t^T B_t \delta_t, \alpha_t^2 \delta_t^T P_t \delta_t + \frac{\alpha_t^4}{4} \delta_t^T Q_t \delta_t\right)$ posterior belief of loss landscape quadratic approximation posterior variance of approximation Trade-off between minimization and uncertainty by choice of *acquisition function*. Quadratic Mean/Std Expected Improvement Prob. of Improvement ate

Unit Tests

(*left*) Convergence guaranteed in noisy quadratic setting. (*right*) m_t is closer to true gradient than g_t on CIFAR-10.

Extra quantities can be used to diagnose training:

Adaptive step sizes allow us to dive into high-variance high-curvature regions. It works, but not ideal for deep learning.

Main issues are:

- Stochastic model parameters (B_t , Q_t , and Σ_t). - Local 1-D Gaussian process has short-horizon bias.

Dives into High-variance High-curvature

Fixes (*maybe*): better dynamics models, and planning.