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Density Estimation: Quantitative

e Construct generative model for data which replaces discrete invertible transformations with

. . o . Given an objective of the form POWER GAS HEPMASS MINIB BSDS 'MNIST CIFAR10
system of continuous-time dynamics using Instantaneous Change of Variables.
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o Flexibility allows us to achieve better performance than previous reversible generative models. S - - _' ' S ' |
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enerate data x by: t t
z~p(z) x=Fyz) then solving backwards in time gives the desired gradients of the loss with respect to the
With invertible Fy then: parameters
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g Ox 0 J. BL
MNIST Omniglot  Frey Faces Caltech
Restricted, simple transformations allow log | 22| to be computed efficiently. & i
Compose multiple simple transformations for g?\ expressive transformation satisfying invertibilit Mo Flow | 86.55+ .06 104.28+.39 4.53+ .02 110.80+ .46
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Table: Variational inference experiments. Negative ELBO on test set.

FFJORD

Continuous Normalizing Flows

Model the generative process with continuous dynamics:

Advantages / Disadvantages

zo ~ p(2o)
% — f(z, 1) Advantages:

o Guaranteed inverse by reversing order of integration, regardless of model parameterization

5]
X=2z=2z+ / fo(z:, t)dt

to

o Efficient, unbiased log-probability estimation without restricting the Jacobian of the

. . . transformation
To obtain the density we solve the initial value problem

(IVP):

e Does not require dimension splitting or ordering choices
o Reversible generative models can now be defined with standard neural network architectures

ogplx) = logpl) — | TGk (2)

Disadvantages:

e Must rely on adaptive numerical ODE solvers for stable training
o Computation time determined by solver, not user
o Currently 4-5x slower than other reversible generative models (Glow, Real-NVP)

Unbiased Log-Density Estimation

Tr(0f /0z;) cannot be computed efficiently for unrestricted f.
We utilize two techniques to estimate it efficiently:

Conclusion

e We have presented a new class of reversible generative models.

Vector-Jacobian Products: Explicitly computing the Jacobian g—f cannot be done efficiently, - _ _ _ _ _ _ _ _
. . Tof " e Our model utilizes continuous dynamics to side-step many issues in previous discrete-time
but reverse-mode automatic differentiation cheaply computes e 5z can be for any vector e. Table: Clow and FEJORD trained on 2D densities. eversible models.
Stochastic Trace Estimators: For any matrix A and a distribution p(e) over vectors where Samples e Our model achieves state-of-the-art results on a number of challenging density estimation and

variational inference benchmarks.

E[e] = 0, Cov[e] =/, then:
B - o QOur approach demonstrates the utility of using continuous-time dynamics and should motive
Tr(A) = Epe)le” Ae] further development of Neural ODEs.

The Monte-Carlo estimator derived from this expectation is known as Hutchinson's estimator.
Combining these two we can build an efficient unbiased estimator

of +Of
Tr (8—2) = Ep(e) <e 8_zt> e
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which can be combined with Equation 2 to give
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Table: Samples from FFJORD trained on MNIST and CIFAR10.
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