

UNIVERSITY OF TORONTO

Spatio-Temporal Event Modeling

Towards building a generative model of discrete events that are localized in continuous time and space. Each sample is a sequence of variable length (*e.g.* all events within $t_i \in [0, T]$): $\mathcal{H} = \{(t_1, x_1), (t_2, x_2), \dots\}$

Applications include spatial propagation of neurons, epidemic outbreaks, ride-hailing customers, earthquakes, etc.

Events can propagate along complex routes, requiring high-fidelity conditional spatial distributions.

Point Processes

Characterized by a conditional intensity function $\lambda(t, x \mid \mathcal{H}_t) \triangleq$

 $\mathbb{P}(\text{One event occurs in } [t, t + \Delta t], B(x, \Delta x) | \mathcal{H}_t)$ lim $|B(\mathbf{x}, \Delta \mathbf{x})|\Delta t$ $\Delta t \downarrow 0, \Delta x \downarrow 0$

where \mathcal{H}_t denotes history before time t, and $B(x, \Delta x)$ denotes a ball centered at $x \in \mathbb{R}^d$ and with radius Δx .

Maximum likelihood training requires solving an integral in x,

$$\log p(\mathcal{H}) = \sum_{i=1}^{n} \log \lambda^*(t_i, \mathbf{x}_i) - \int_0^T \int_{\mathbb{R}^d} \lambda^*(t_i, \mathbf{x}_i) dt_i$$

Continuous Normalizing Flows (CNF)

Describes a **continuum of distributions** by tracking infinitesimal changes. Given $\frac{dx_t}{dt} = f_{\theta}(t, \mathbf{x})$, the time-dependent distribution follows nt

$$\log p_t(\mathbf{x}_t) = \log p_0(\mathbf{x}_0) - \int_0^t \nabla \cdot f$$

The resulting probability densitities p_t are tractable to compute (with an ODE solver) and always normalized.

Neural Spatio-Temporal Point Processes Ricky T. Q. Chen¹, Brandon Amos², Maximilian Nickel² ¹University of Toronto; Vector Institute. ²Facebook AI Research.

 $(\tau, \mathbf{x}) \, \mathbf{d} \mathbf{x} \mathbf{d} \tau.$

f dt

Neural Spatio-Temporal Point Process

Parameterize intensity with density of a CNF.

 $\lambda^*(t, \mathbf{x}) = \lambda^*(t) p^*(\mathbf{x} \mid t)$ where * is shorthand for dependence on history \mathcal{H}_t .

(Effectively replaces $\int_{\mathbb{R}^d}$ with $n \int_0^{\tau_i}$)

$$\log p(\mathcal{H}) = \sum_{i=1}^n \log \lambda^*(t_i) - \int_0^n$$

How can we **condition a CNF** on \mathcal{H}_t for parameterizing p^* ?

Instantaneous vs. Continuous Updates

Jump CNF: Models conditioning with instantaneous *jumps* using standard normalizing flows. **Slow**: requires sequentially updating for each event in \mathcal{H}_t .

Attentive CNF: Models conditioning with continuous attention on the sample paths within the drift function f. $\frac{d\{x_i\}_{i=0}^n}{dt} = f(x_1, \dots, x_n) = MaskedMultiheadAttention$ Fast: all ODEs can be solved in parallel. Low-variance: Structure within MultiheadAttention allows efficient low-variance estimator of $\nabla \cdot f$.

Sample paths for a sequence of events:

Ablation Experiments

Applications across Multiple Domains

	Pinwheel		Earthquakes JP		COVID-19 NJ		BOLD5000	
Model	Temporal	Spatial	Temporal	Spatial	Temporal	Spatial	Temporal	Spatial
Poisson Process	$-0.784_{\pm 0.001}$	_	$-0.111_{\pm 0.001}$	_	$0.878 \scriptstyle \pm 0.016$	_	$0.862 \scriptstyle \pm 0.018$	_
Self-correcting Process	$-2.117_{\pm 0.222}$	—	$-7.051_{\pm 0.780}$	_	$-10.053_{\pm 1.150}$	—	$-6.470_{\pm 0.827}$	—
Hawkes Process	$-0.276_{\pm 0.033}$	—	$0.114 \scriptstyle \pm 0.005$	_	$2.092 \scriptstyle \pm 0.023$	—	$2.860{\scriptstyle \pm 0.050}$	—
Neural Hawkes Process	$-0.023_{\pm 0.001}$	—	$0.198 \scriptstyle \pm 0.001$	—	$2.229 \scriptstyle \pm 0.013$	_	$3.080 \scriptstyle \pm 0.019$	—
Conditional KDE		$-2.958{\scriptstyle\pm0.000}$		$-2.259_{\pm 0.001}$	—	$-2.583{\scriptstyle \pm 0.000}$		-3.467 ± 0.000
Time-varying CNF	— -	$-2.185{\scriptstyle \pm 0.003}$		$1.459_{\pm 0.016}$	— .	$-2.002_{\pm 0.002}$	— -	$-1.846 \scriptstyle \pm 0.019$
Neural Jump SDE (GRU)	$-0.006_{\pm 0.042}$	$-2.077_{\pm 0.026}$	$0.186_{\pm 0.005}$ -	$1.652_{\pm 0.012}$	$2.251_{\pm 0.004}$	$-2.214_{\pm 0.005}$	$5.675{\scriptstyle\pm0.003}$	$0.743 \scriptstyle \pm 0.089$
Jump CNF	$0.027_{\pm 0.002}$	$-1.562_{\pm 0.015}$	$0.166_{\pm 0.001}$ -	$-1.007_{\pm 0.050}$	$2.242_{\pm0.002}$	$-1.904_{\pm0.004}$	$5.536 \scriptstyle \pm 0.016$	$1.246 \scriptstyle \pm 0.185$
Attentive CNF	$0.034_{\pm 0.001}$	$-1.572 \scriptstyle \pm 0.002$	$0.204_{\pm 0.001}$	$-1.237_{\pm 0.075}$	$2.258 \scriptstyle \pm 0.002$	$-1.864 \scriptstyle \pm 0.001$	$5.842 \scriptstyle \pm 0.005$	$1.252 \scriptstyle \pm 0.026$
— — — — — — — — — —	I		_			/1 • 1	- 1)

Table: Log-likelihood per event on held-out test data (higher is better).

Adapts Spatial Densities On-the-fly

Figure: Evolution of spatial densities before returning back to marginal density.

Useful References and Links

- "Neural Ordinary Differential Equations" Chen et al. (2018) [1] [2] "FFJORD: <abbreviated>" Grathwohl & Chen et al. (2019) [3] "Neural Jump SDEs" Jia & Benson (2019) [4] "The Lipschitz Constant of Self-Attention" Kim et al. (2020)

Code: https://github.com/facebookresearch/neural_stpp

FACEBOOKAI