
Neural Spatio-Temporal Point Processes
Ricky T. Q. Chen1, Brandon Amos2, Maximilian Nickel2

1University of Toronto; Vector Institute. 2Facebook AI Research.

Spatio-Temporal Event Modeling

Towards building a generative model of discrete events that
are localized in continuous time and space. Each sample is a
sequence of variable length (e.g. all events within ti ∈ [0,T]):

H = {(t1, x1), (t2, x2), . . . }
Applications include spatial propagation of neurons, epidemic
outbreaks, ride-hailing customers, earthquakes, etc.

Events can propagate along complex routes, requiring
high-fidelity conditional spatial distributions.

Point Processes

Characterized by a conditional intensity function λ(t, x | Ht) ,

lim
∆t↓0,∆x↓0

P (One event occurs in [t, t + ∆t],B(x ,∆x) | Ht)

|B(x ,∆x)|∆t

where Ht denotes history before time t, and B(x ,∆x) denotes
a ball centered at x ∈ Rd and with radius ∆x .

Maximum likelihood training requires solving an integral in x ,

log p (H) =
n∑

i=1

log λ∗(ti, xi)−
∫ T

0

∫
Rd

λ∗(τ, x) dxdτ.

Continuous Normalizing Flows (CNF)

Describes a continuum of distributions by tracking
infinitesimal changes. Given dxt

dt = fθ(t, x), the time-dependent
distribution follows

log pt(xt) = log p0(x0)−
∫ t

0

∇ · f dt

The resulting probability densitities pt are tractable to compute
(with an ODE solver) and always normalized.

Neural Spatio-Temporal Point Process

Parameterize intensity with density
of a CNF.

λ∗(t, x) = λ∗(t) p∗(x | t)

where ∗ is shorthand for dependence
on history Ht.

(Effectively replaces
∫
Rd with n

∫ ti
0)

x0

5

t

* (t)

log p(H) =
n∑

i=1

log λ∗(ti)−
∫ T

0

λ∗(τ) dτ +
n∑

i=1

log p∗(xti|ti)

How can we condition a CNF on Ht for parameterizing p∗?

Instantaneous vs. Continuous Updates

Jump CNF: Models conditioning with instantaneous jumps
using standard normalizing flows.
Slow: requires sequentially updating for each event in Ht.

Attentive CNF: Models conditioning with continuous
attention on the sample paths within the drift function f .

d{xi}ni=0

dt
= f (x1, . . . , xn) = MaskedMultiheadAttention

Fast: all ODEs can be solved in parallel.
Low-variance: Structure within MultiheadAttention allows
efficient low-variance estimator of ∇ · f .

Sample paths for a sequence of events:

x(1
)

t

Sequence 1

x(2
)

t
x(3

)
t

0 t4t3t2t1 T

x(4
)

t

Jump CNF

x(1
)

t

Sequence 1
Sequence 2

x(2
)

t
x(3

)
t

0 t1 t2 t3 t4 T

x(4
)

t

Attentive CNF

Ablation Experiments

0 2000 4000 6000 8000 10000
Training iteration

1.60

1.62

1.64

1.66

1.68

1.70

V
al

id
at

io
n

N
LL

Naïve Hutchinson
Low-var Hutchinson

Figure: Low-variance Estimator

0 100000 200000 300000 400000
Wallclock time (seconds)

2.2

2.4

2.6

2.8

3.0

3.2

Tr
ai

n
N

LL

Jump CNF
Attentive CNF

Figure: Runtime Comparison

Applications across Multiple Domains

Pinwheel Earthquakes JP COVID-19 NJ BOLD5000

Model Temporal Spatial Temporal Spatial Temporal Spatial Temporal Spatial

Poisson Process -0.784±0.001 – -0.111±0.001 – 0.878±0.016 – 0.862±0.018 –

Self-correcting Process -2.117±0.222 – -7.051±0.780 – -10.053±1.150 – -6.470±0.827 –

Hawkes Process -0.276±0.033 – 0.114±0.005 – 2.092±0.023 – 2.860±0.050 –

Neural Hawkes Process -0.023±0.001 – 0.198±0.001 – 2.229±0.013 – 3.080±0.019 –

Conditional KDE – -2.958±0.000 – -2.259±0.001 – -2.583±0.000 – -3.467±0.000

Time-varying CNF – -2.185±0.003 – -1.459±0.016 – -2.002±0.002 – -1.846±0.019

Neural Jump SDE (GRU)-0.006±0.042 -2.077±0.026 0.186±0.005 -1.652±0.012 2.251±0.004 -2.214±0.005 5.675±0.003 0.743±0.089

Jump CNF 0.027±0.002 -1.562±0.015 0.166±0.001 -1.007±0.050 2.242±0.002 -1.904±0.004 5.536±0.016 1.246±0.185

Attentive CNF 0.034±0.001 -1.572±0.002 0.204±0.001 -1.237±0.075 2.258±0.002 -1.864±0.001 5.842±0.005 1.252±0.026

Table: Log-likelihood per event on held-out test data (higher is better).

Adapts Spatial Densities On-the-fly

Figure: Evolution of spatial densities before returning back to marginal density.

Useful References and Links

[1] “Neural Ordinary Differential Equations” Chen et al. (2018)

[2] “FFJORD: <abbreviated>” Grathwohl & Chen et al. (2019)

[3] “Neural Jump SDEs” Jia & Benson (2019)

[4] “The Lipschitz Constant of Self-Attention” Kim et al. (2020)

Code: https://github.com/facebookresearch/neural_stpp

https://github.com/facebookresearch/neural_stpp

