Neural Spatio-Temporal Point Processes

T%IE{SIS%FO Ricky T. Q. Chen', Brandon Amos?, Maximilian Nickel? FACEBOOK Al

'University of Toronto; Vector Institute. Facebook Al Research.

Spatio-Temporal Event Modeling Neural Spatio- Temporal Point Process Ablation Experiments
. . . . 170 \’ >2 Jump CNF
Towards-bmlc.lmg : g-eneratllve model of discrete events that — parameterize intensity with density 168 | Lowvar Hutoingor 3.0 — Atentive ONF
are localized in continuous time and space. Each sample is a of 2 CNF. = =Py
sequence of variable length (e.g. all events within t; € |0, T}]): N (£ x) = N (8) pi(x | S 100 NW'\\ 82 t\
— 7 B ~ 162 ﬂw* 24
H=1(t,x) (%)} where * is shorthand for dependence 160 Vit \Shagm 20 100000 200000 300000 400000

0 2000 4000 6000 38000 10000

Wallclock time (seconds)
Training iteration

Applications include spatial propagation of neurons, epidemic

| 2 on history H;.
outbreaks, ride-hailing customers, earthquakes, etc.

Figure: Runtime Comparison

Figure: Low-variance Estimator

(Effectively replaces [, with n fot")

Events can propagate along complex routes, requiring
high-fidelity conditional spatial distributions.

BCHN Applications across Multiple Domains

Earthquakes JP COVID-19 NJ BOLD5000

n T n
log p(H) = E log A*(t;) — / N(7) dT + g log p*(x:|t;) Pinwheel
Point Processes i—1 0 i—1 Model Temporal Spatial Temporal Spatial Temporal Spatial Temporal Spatial
Poisson Process -0.784 +0.001 — -0.111 40001 — 0.8780.016 — 0.862-0.018 —

_ . _ _ _ A How can we condition a CNF on %t for para meterizing p*? Self-correcting Process -2.117w022 — -7.05lwom — -10.053:0 — -6.470s0r —
CharaCterlzed by a Condltlonal IntenSIty fu nCtlon)\(t7 X | Ht) — Hawkes Process -0.276+0.033 — 0.114:000 — 2.092.10.023 — 2.860-0.050 —
. Neural Hawkes Process -0.023.0001 — 0.198.0.001 — 2.22910013 — 3.080-0.019 —
. b) (One event Occurs |n [t7 t —|— At]’ B(X7 AX) | 7—[1_) InStantaneous VS- Contlnuous Updates Conditional KDE — -2.958-0.000 — -2.259.10001 — -2.58310.000 — -3.46(+0.000
||m Time—varying CNF — -2.185:0.003 — -1.459.0.016 — -2.002=0.002 — -1.846:0.019
Ati,O,AXl,O | B(X7 AX) ‘At i Neural Jump SDE (GRU)'0.006i0.042—2.077i0.026 0.186-0005-1.652-0012 2.25120004-2.214 20005 5.675+0003 0.743-0080
Jump CNF: Models condltlomng with instantaneous Jumps Jump CNF 0.027-0002-1.562:005 0.166:0001-1.007 000 2.242000-1.904 0000 5.5360016 1.246 20155
Where Ht denOteS hIStOry befOre tlme t, and B(X7 AX) denOteS USIHg Sta ndard nOrmahZIng -HOWS Attentive CNF | | 0.03440001-1.57220002 0.204 10001-1.237 10,075 225810002—186410001 5842i0005 1.252 1002
a ball centered at x € RY and with radius Ax. Slow: requires sequentially updating for each event in H,;. Table: Log-likelihood per event on held-out test data (higher is better).
Maximum likelihood training requires solving an integral in X, Attentive CNF: Models conditioning with continuous Adapts Spatial Densities On-the-fly

attention on the sample paths within the drift function f.

n T
log p (H) — Z log)‘*(tiv Xi) - /O /)*(T’ X) dxdr. d{Xi}?:O f
=1 Re a

. (x1,...,X,) = MaskedMultiheadAttention U L R e e N
. -/,‘ x x x x x 'X x \ q,\/,Qx
Fast: all ODEs can be solved in parallel. V
Continuous Normalizing FlOWS (CNF) | ow-variance: Structure within MultiheadAttention allows Figure: Evolution of spatial densities before returning back to marginal density.

efficient low-variance estimator of V - f.

Useful References and Links

Describes a continuum of distributions by tracking Sample paths for 3 sequence of events:
ax; __ :
infinitesimal changes. Given dt @(tv X)' the time-dependent a — | = — 11| “Neural Ordinary Differential Equations” Chen et al. (2018)
distribution follows t + == ==~ [2] “FFJORD: <abbreviated>" Grathwohl & Chen et al. (2019)
log pe(x;) = log po(x0) — / V. f dt 5] 5. RN 3] “Neural Jump SDEs" Jia & Benson (2019)
0 : N o N BN S == [4] “The Lipschitz Constant of Self-Attention” Kim et al. (2020)
The resulting probability densitities p; are tractable to compute 0 3 5 G TR 0 2 n 6 —

(With an ODE solver) and always normalized. Jump CNF Attentive CNF Code: https://github.com/facebookresearch/neural_stpp

https://github.com/facebookresearch/neural_stpp

