

UNIVERSITY OF TORONTO

Extending Neural ODEs with Discontinuities

Solutions of ODEs are smooth trajectories. ODEs lack a mechanism for modeling instantaneous interventions.

Example (simulation of a bouncing ball):

Velocity is discontinuous. Position has discontinuous derivative. A Neural ODE fails to model this.

We implement differentiable event handling to build models that learn when and how to apply instantaneous interventions.

Differentiable Event Handling

Define event function g(z, t). Event defined as when trajectories cross the root, *i.e.* t^* s.t. $g(z(t^*), t^*) = 0$.

 $t^*, z(t^*) = \texttt{ODESolveEvent}(z_0, f, g, t_0, \theta, \phi)$ (1)Solves $\frac{dz}{dt} = f(z, t, \theta)$ with initial state (z_0, t_0) until event t^* .

Gradient of ODESolveEvent can be derived by combining *implicit function theorem* and adjoint method (see paper for details).

Efficient O(1)-memory gradient implemented in github.com/rtqichen/torchdiffeq.

Learning Neural Event Functions for ODEs Ricky T. Q. Chen¹, Brandon Amos², Maximilian Nickel² ¹University of Toronto; Vector Institute. ²Facebook AI Research.

Neural Event ODE

Repeat: (i) solve until event, (ii) update state instantaneously.

while $t_i < T$ do (i) $t_{i+1}, z'_{i+1} = ODESolveEvent(z_i, f, g, t_i)$ (ii) $z_{i+1} = h(t_{i+1}, z'_{t+1})$ end while

Capable of modeling variable number of discontinuities.

Switching Linear Dynamical System

(a) Ground truth (b) RNN (LSTM) (c) Neural ODE (d) Neural Event ODE Figure: A Neural Event ODE jumps between a set of linear dynamics using only gradients. (Colors denote which linear system, not event boundaries.)

Modeling Physics with Collision

Moreover, Neural ODE baseline approximates collisions with stiff trajectories, requiring $10 \times$ more compute to solve.

Threshold-based Event Functions

Threshold-based event occurs when an integral over a positive function reaches a predetermined threshold.

Allows exact gradients for integrate-and-fire spiking neural nets, inverse sampling, temporal point processes (TPP), etc.

Differentiable Sampling for TPPs

Sampling from a temporal point process (repeat): (i) sample $s_i \sim \text{Exp}(1)$ (ii) solve for t_i such that $s_i = \int_{t_i}^{t_i} \lambda(t) dt$

Differentiable event handling through step (ii) provides the reparameterization gradient for temporal point processes.

Figure: Visualization of a discrete-valued control (*left*) in a continuous-time environment (*right*), using the Hodgkin-Huxley model of neuronal dynamics.

FACEBOOKAI

$$t^*$$
 such that $s = \int_{t_0}^{t^*} \lambda(t) dt$ (2)

where $\lambda(t) > 0$. Implemented by tracking $\Lambda(t) \triangleq \int_{t_0}^t \lambda(s) ds$ as part of the ODE state and using $g(t, z(t)) = s - \Lambda(t)$.