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Reward-driven

- maximize reward 
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Generator Matching

Extending the Flow Matching recipe to jump Markov processes
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uθ
t

Parameterization Sampling

A vector field  that 

points towards the data

uθ
t

dXt = uθ
t (Xt)dt + σtdBtdXt = uθ

t (Xt)dt

A diffusion process  with 

(optional) diffusion coefficient 

Xt

σt

Ordinary Differential Equation Stochastic Differential Equation

Continuous-time Markov Processes



X0 ∼ p

Xt+h ∼ pt+h|t ( ⋅ , Xt)pt+h|t

Transition kernel

Continuous-time Markov Processes

DiffusionFlow
Local perturbations only



X0 ∼ p

Xt+h ∼ pt+h|t ( ⋅ , Xt)pt+h|t

Transition kernel

Generalizing beyond local perturbations

DiffusionFlow Jump

𝒮 = ℝd

𝒮 = 𝒟

CTMC

Local perturbations only 🤩



Infinitesimal Generator
Generalize the notion of first-order characterization 

Generator

pt+h|t ( ⋅ , Xt) = δXt
+ h

d
dh h=0

pt+h|t( ⋅ , Xt) + o(h)

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

 order1st order0th error

https://arxiv.org/abs/2410.20587


First-order characterizations

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

 order1st order0th error

ODE:

SDE:

Jump & 

CTMC:

 order1st order0th error

 order1st order0th error

Xt+h = Xt + hut(Xt)+o(h)

Xt+h = Xt + hut(Xt)+ hσtε + o(h)

Xt+h ∼ δXt
( ⋅ ) + hut( ⋅ |Xt)+o(h)

https://arxiv.org/abs/2410.20587


Jump Markov process

Xt+h ∼ δXt
( ⋅ ) + hut( ⋅ |Xt)

Interpret ut( ⋅ |Xt) = λt(Xt)Qt( ⋅ |Xt)

Unnormalized distribution

NormalizedJump rate

Jump process (sampling)

Xt+h = Xt

Xt+h ∼ Qt( ⋅ |Xt) if hλt(Xt) ≥ U[0,1]

otherwise



x1

Generate a single target point

Build flow from conditional flows

ut(x |x1)

pt|1(x |x1) conditional probability

conditional velocity

Xt = (1 − t)X0 + tX1



x1

Generate a single target point

ut(x) = 𝔼[ut(Xt |X1) Xt = x]ut(Xt |X1)

pt(x) = 𝔼X1
pt|1(x |X1)pt|1(x |X1)

Build flow from conditional flows

ut(x |x1)

pt|1(x |x1) conditional probability

conditional velocity
average

Xt = (1 − t)X0 + tX1



Building generator from conditional generators

pt|1(x |x1)

x1

conditional probability

conditional generator
"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

Identical recipe as the flow case…

ut( ⋅ |x, x1)

https://arxiv.org/abs/2410.20587


Building generator from conditional generators

ut( ⋅ |x) = 𝔼[ut( ⋅ |Xt, X1) Xt = x]ut( ⋅ |Xt, X1)

pt(x) = 𝔼X1
pt|1(x |X1)pt|1(x |X1)

ut( ⋅ |x, x1)

pt|1(x |x1)

x1

conditional probability

conditional generator
average

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

Generate a single target point
Identical recipe as the flow case…

https://arxiv.org/abs/2410.20587


The Marginalization Trick 

Theorem: The marginal generator generates the marginal probability path. 

                                         

ut(x) = 𝔼[ut(Xt |X1) | Xt = x] pt(x) = 𝔼X1
pt|1(x |X1)

"Flow Matching for Generative Modeling" Lipman el al. (2022) 

ut( ⋅ |x) = 𝔼[ut( ⋅ |Xt, X1) | Xt = x]

Flow and diffusion:

Jump and CTMC:

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2410.20587


Flow Matching Loss
• Flow Matching loss: 

• Conditional Flow Matching loss:

ℒFM(θ) = 𝔼t,Xt
uθ

t (Xt) − ut(Xt) 2ut(Xt)

ℒCFM(θ) = 𝔼t,X1,Xt
uθ

t (Xt) − ut(Xt |X1) 2ut(Xt |X1)

Theorem: Losses are equivalent,                                 

∇θℒFM(θ) = ∇θℒCFM(θ)



• Flow Matching loss: 

• Conditional Flow Matching loss:

ℒFM(θ) = 𝔼t,Xt
D(ut(Xt) , uθ

t (Xt))ut(Xt)

Generalized Flow Matching Loss

Theorem: Losses are equivalent if and only if  is a Bregman divergence.                                        D

∇θℒFM(θ) = ∇θℒCFM(θ)

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

ℒCFM(θ) = 𝔼t,X1,Xt
D(ut(Xt |X1) , uθ

t (Xt))ut(Xt |X1)

https://arxiv.org/abs/2410.20587


Generalized Flow Matching Loss

Theorem: Losses are equivalent iff  is a Bregman divergence.                                        D

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

∇θ 𝔼X,YD(Y, gθ(X)) = ∇θ 𝔼XD(𝔼[Y | X] , gθ(X))𝔼[Y | X]Y

D(a, b) = ϕ(a) − [ϕ(b) + ⟨a − b, ∇ϕ(b)⟩]

• Includes MSE, ELBO, many many possible instantiations …

https://arxiv.org/abs/2410.20587


Different sample paths

Probability Path

Flow

Jump

Flow   
+Jump

Toy problem illustration

Ground 
truth



Different sample paths Same probability path

Ground 
truth

Flow

Jump

Flow   
+Jump

Toy problem illustration
Probability Path



Markov jump model

Markov superpositions show 
synergistic effects of two models!

Markov superposition

Large unexplored design space!

Image Generation

Flow model

Jump model

Flow  
+ jump 
model



Manifold jump model on SO(3).


Make multimodal: Combine 
continuous and discrete models

FrameJump : Protein Generation



Discrete Flow Matching

Discrete space diffusion, general corruption processes



Continuous-time Markov Chains (CTMC)

• State space : sequences of tokens 

•  

𝒳 = 𝒯d

x = (x1, x2, …, xd) ∈ 𝒳

x = (x1, x2)

y

p q

“Discrete Flow Matching” Gat el al. (2024)

“Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design” Campbell et al. (2024)

pt+h|t( ⋅ , Xt) = δXt
( ⋅ ) + h ut( ⋅ |Xt) + o(h)

ut(y |x)

Unnormalized 

distribution over 𝒳

https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2402.04997


Factorized velocity
ut(x) = [u1

t (x), …, ud
t (x)]

Similar to continuous case :𝒮 = ℝd

Example: 

d ≈ 1000, |𝒯 | ≈ 50000

“A Continuous Time Framework for Discrete Denoising Models” Campbell et al. (2022) 

ui
t(yi |x)

ut( ⋅ |x) ∈ ℝd|𝒯|

x

ut( ⋅ |x) ∈ ℝ𝒯d

y

x

Intractable

https://arxiv.org/abs/2205.14987


Build (factorized) velocities

x1

ui
t(yi, x |x0, x1) =

1
1 − t [δ(xi

1, xi) − δ(yi, xi)]

pt(x) = …

ui
t(yi |x) = … ui

t(yi |xi, x1) =
1

1 − t
δxi

1
(yi) yi ≠ xi

pi
t|1(x

i |x1) = (1 − t)p(xi) + tδ(xi, xi
1)

Xi = {xi
0 with prob 1 − t

xi
1 with prob t

“Discrete Flow Matching” Gat el al. (2024)

“Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design” Campbell et al. (2024)

average

Mixture path

jump rate where to jump

https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2402.04997


Discrete Flow Matching

pt(x) (Xt)0≤t≤1

"Flow Matching with General Discrete Paths: A Kinetic-Optimal Perspective” Shaul et al. (2024)

“Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution” Lou et al. (2024)

“Discrete Flow Matching” Gat el al. (2024)

https://arxiv.org/abs/2412.03487v1
https://arxiv.org/abs/2310.16834
https://arxiv.org/abs/2407.15595


Example: code generation mask model (1.7B)

“Discrete Flow Matching” Gat el al. (2024)

"Simple and Effective Masked Diffusion Language Models" Sahoo et al. (2024)
"Simplified and Generalized Masked Diffusion for Discrete Data" Shi et al. (2024)

https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2406.07524
https://arxiv.org/abs/2406.04329


General Discrete Probability Paths

"Flow Matching with General Discrete Paths: A Kinetic-Optimal Perspective" Shaul el al. (2024)

Given any (conditional) probability path ,  
a kinetic optimal (conditional) velocity  is:

pt(x)

ut(y |x) =
ReLU(pt(x) ·pt(y) − ·pt(x)pt(y))

pt(x)

ImageNet 256x256

CIFAR10

E.g. Metric paths:

ut(y |x, x1) = pt|1(x |x1)
·βtReLU(d(x, x1) − d(y, x1))

pt|1(x |x1) = softmax(−βtd(x, x1))

https://arxiv.org/abs/2412.03487


FUDOKI: Multimodal w/ General Discrete Paths

"FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities" Wang et al. (2025)

https://fudoki-hku.github.io/


Edit Flows

Imbuing diffusion with dimensional changes



Designing a model for variable length sequences

State space

X ∈
N

⋃
n=0

𝒯n

Data contains 

variable length 

sequences

x

Forcefully aligning tokens doesn’t make sense for sequence generation

 - Requires padding with <EOS> to handle variable length generation 

 - Makes the model over-confident in predicting <EOS>



Designing a model for variable length sequences

State space

X ∈
N

⋃
n=0

𝒯n

Data contains 

variable length 

sequences

VERY rough description of some prior works: 

  - Train on an (ordered) sequence of edit operations 

  - 2-stage model to predict # edits, use causal mask model to predict tokens



Designing a model for variable length sequences

CTMC Model

Sampling process Inputs / Outputs

State space

X ∈
N

⋃
n=0

𝒯n

Data contains 

variable length 

sequences



Define unique set of edits via alignments

Multiple ways to map  to Xt X1 Intractable to construct ut(x |Xt, X1)

Alignments

Z ∈ 𝒯N

Fixed-length (padded) sequences

 defines a unique set of edit operations to map  to (Z0, Z1) X0 X1



Discrete Flow Matching with auxiliary variables



Inherits similar optimality as continuous space

Training  pairs(X0, X1) Generated  pairs(X0, X1)

Learned model will try to minimize the number of edits! Maps nearby .(X0, X1)



Image Captioning



Text & Code Generation (1.3B)



Summary: Jumps with the Flow Matching recipe!

Xt+h ∼ δXt
( ⋅ ) + hut( ⋅ |Xt) ut( ⋅ |Xt) = λt(Xt)Qt( ⋅ |Xt)

Unnormalized distribution NormalizedJump rate

Learn conditional expectation

ut( ⋅ |x) = 𝔼[ut( ⋅ |Xt, X1) | Xt = x]

Jump process (sampling)

Xt+h = Xt

Xt+h ∼ Qt( ⋅ |Xt) if hλt(Xt) ≤ U[0,1]

otherwise



Collaborators


