Unlocking Dis^{CON}tinui^{ties} in Flow Models: Jumps, Control Flow, Insertions, Deletions, etc

@ CVPR25 Workshop on Visual Generative Modeling: What's After Diffusion?

Ricky T. Q. Chen

About me and this talk

Flow Matching

Meta MovieGen

About me and this talk

Reward-driven

- maximize reward

- no data available

Adjoint Matching

Meta MovieGen

Adjoint Sampling

About me and this talk

0.00

- Discrete Flow Matching
- Edit Flows

Meta MovieGen

def is_prime(n: int) -> bool:

Generator Matching Extending the Flow Matching recipe to jump Markov processes

 $\overline{X_1} \sim q$

Continuous-time Markov Processes

Parameterization

A vector field u_t^{θ} that points towards the data

Sampling

A diffusion process X_t with (optional) diffusion coefficient σ_t

Ordinary Differential Equation Stochastic Differential Equation

Continuous-time Markov Processes

Transition kernel

 $X_{t+h} \sim p_{t+h|t}(\cdot, X_t)$

 $X_0 \sim p$

Infinitesimal Generator

Generalize the notion of **first-order characterization**

Generator

$$\frac{1}{h} \Big|_{h=0} p_{t+h|t}(\cdot, X_t) + o(h)$$

$$1^{\text{st}} \text{ order} \qquad \text{error}$$

Jump Markov process

 $X_{t+h} \sim \delta_{X_t}(\cdot) + h u_t(\cdot | X_t)$

Unnormalized distribution

Interpret $u_t(\cdot | X_t) = \lambda_t(X_t)Q_t$

Jump rate

 $X_{t+h} = X_t$

$$t(\cdot | X_t)$$

Normalized

Jump process (sampling) $X_{t+h} \sim Q_t(\cdot | X_t) \quad \text{if } h\lambda_t(X_t) \geq U[0,1]$ otherwise

Build flow from conditional flows

Generate a single target point

$X_t = (1 - t)X_0 + tX_1$

 $p_{t|1}(x | x_1)$ conditional probability

 $u_t(x \mid x_1)$ conditional velocity

Build flow from conditional flows

 $p_t(x) = \mathbb{E}_{X_1} p_{t|1}(x | X_1)$ $u_t(x) = \mathbb{E}\left[\frac{u_t(X_t \mid X_1)}{X_t} \mid X_t = x\right] \checkmark$

Generate a single target point

$X_t = (1 - t)X_0 + tX_1$

 $-\mathcal{U}_t(X \mid X_1)$

 $- p_{t|1}(x | x_1)$ conditional probability

average

conditional velocity

Building generator from conditional generators

Identical recipe as the flow case...

 $p_{t|1}(x | x_1)$ conditional probability

 $u_t(\cdot | x, x_1)$ conditional generator

Building generator from conditional generators

Identical recipe as the flow case...

$$p_t(x) = \mathbb{E}_{X_1} p_{t|1}(x \mid X_1)$$
$$\mathbf{u}_t(\cdot \mid x) = \mathbb{E}\left[u_t(\cdot \mid X_t, X_1) \mid X_t = x \right]$$

Generate a single target point

The Marginalization Trick

Theorem: The marginal generator generates the marginal probability path.

Flow and diffusion:

 $u_t(x) = \mathbb{E}\left[u_t(X_t \mid X_1) \mid X_t = x\right]$

Jump and CTMC:

 $u_t(\cdot \mid x) = \mathbb{E} \left[u_t(\cdot \mid X_t, X_1) \mid X_t = x \right]$

$p_t(x) = \mathbb{E}_{X_1} p_{t|1}(x | X_1)$

"Flow Matching for Generative Modeling" Lipman el al. (2022)

Flow Matching Loss

Flow Matching loss:

$$\mathscr{L}_{\mathrm{FM}}(\theta) = \mathbb{E}_{t,X_t} \| u_t$$

Conditional Flow Matching loss:

$$\mathscr{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t,X_1,X_t}$$

Theorem: Losses are equivalent,

 $\nabla_{\theta} \mathscr{L}_{\text{FM}}(\theta) = \nabla_{\theta} \mathscr{L}_{\text{CFM}}(\theta)$

 $u_t^{\theta}(X_t) - u_t(X_t) \|^2$

 $\|u_t^{\theta}(X_t) - u_t(X_t | X_1)\|^2$

Generalized Flow Matching Loss

• Flow Matching loss:

$$\mathscr{L}_{\mathrm{FM}}(\theta) = \mathbb{E}_{t,X_t} D($$

Conditional Flow Matching loss:

$$\mathscr{L}_{\mathrm{CFM}}(\theta) = \mathbb{E}_{t,X_1,X_t}$$

Theorem: Losses are equivalent if and only if D is a Bregman divergence. $\nabla_{\theta} \mathscr{L}_{\mathrm{FM}}(\theta) = \nabla_{\theta} \mathscr{L}_{\mathrm{CFM}}(\theta)$

 $(u_t(X_t), u_t^{\theta}(X_t))$

 $D(u_t(X_t | X_1), u_t^{\theta}(X_t))$

Generalized Flow Matching Loss

Theorem: Losses are equivalent **iff** D is a **Bregman divergence**.

$\nabla_{\theta} \mathbb{E}_{X,Y} D(Y, g^{\theta}(X)) = \nabla_{\theta} \mathbb{E}_{X} D(\mathbb{E}[Y \mid X], g^{\theta}(X))$

$D(a,b) = \phi(a) - [\phi(b) + \langle a - b, \nabla \phi(b) \rangle]$

Includes MSE, ELBO, many many possible instantiations ...

Toy problem illustration

Ground truth

Probability Path

Toy problem illustration

Different sample paths

Probability Path

Same probability path

Image Generation

Markov jump model

Large unexplored design space!

Markov superposition

Markov superpositions show synergistic effects of two models!

Method	CIFAR10	ImageN
DDPM (Ho et al., 2020) VP-SDE (Song et al., 2020) EDM (Karras et al., 2022)	$3.17 \\ 3.01 \\ 1.98$	$6.99 \\ 6.84 \\ -$
Flow model (Euler)	2.94	4.58
Jump model (Euler)	4.23	7.66
Jump + Flow MS (Euler)	2.49	3.47
Flow model (2nd order)	2.48	3.59
Jump + Flow MS (mixed)	2.36	3.33

FrameJump : Protein Generation

Manifold jump model on SO(3).

Make **multimodal**: Combine continuous and discrete models

Meth RFdi Fram Foldl Protp Prote Multi w/ So w/ So

nod	Multi Div.	modal Nov.	Unim Div.	odal Nov.
iffusion (Watson et al., 2023)	N	/A	0.4	0.37
neFlow (Yim et al., 2024)	N	/A	0.39	0.39
Flow (Bose et al., 2023)	N	/A	0.24	0.32
pardelle (Chu et al., 2024)	0.1	0.4	0.12	0.41
einGenerator (Lisanza et al., 2023)	0.09	0.31	0.19	0.35
tiFlow (Campbell et al., 2024b)	0.38	0.39	0.52	0.39
O(3) jumps (ours)	0.48	0.41	0.63	0.41
O(3) jumps + flow (ours)	0.47	0.4	0.59	0.40

Discrete Flow Matching Discrete space diffusion, general corruption processes

Continuous-time Markov Chains (CTMC)

- State space $\mathscr{X} = \mathscr{T}^d$: sequences of tokens
- $x = (x^1, x^2, \dots, x^d) \in \mathcal{X}$

 $p_{t+h|t}(\cdot, X_t) = \delta_{X_t}(\cdot) + h u_t(\cdot | X_t) + o(h)$

Unnormalized distribution over ${\mathcal X}$

> "Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design" Campbell et al. (2024) "Discrete Flow Matching" Gat el al. (2024)

Factorized velocity

Example: $d \approx 1000, |\mathcal{T}| \approx 50000$

```
def fib(n: int):
   """Return n-th Fibonacci
   number.
   >>> fib(10)
   55
    >>> fib(1)
    1
    >>> fib(8)
   21
    .....
   if n < 1: return 0
   if n < 2: return 1
   return fib(n-1) + fib(n-2)
```


Similar to continuous case $\mathcal{S} = \mathbb{R}^d$: $u_t(x) = [u_t^1(x), \dots, u_t^d(x)]$

Intractable

$$u_t^i(y^i \mid x)$$

"A Continuous Time Framework for Discrete Denoising Models" Campbell et al. (2022)

Build (factorized) velocities

$$p_t(x) = \dots$$

$$aver$$

$$w_t^i(y^i | x) = \dots$$

"Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design" Campbell et al. (2024) "Discrete Flow Matching" Gat el al. (2024)

Mixture path

 $p_{t|1}^{i}(x^{i} | x_{1}) = (1 - t)p(x^{i}) + t\delta(x^{i}, x_{1}^{i})$ $u_t^i(y^i \,|\, x^i, x_1) = \underbrace{1}_{1 \quad t} \delta_{x_1^i}(y^i)$ rage $y^i \neq x^i$ where to jump jump rate

Discrete Flow Matching

 $(X_t)_{0 \le t \le 1}$

"Discrete Flow Matching" Gat el al. (2024)

"Flow Matching with General Discrete Paths: A Kinetic-Optimal Perspective" Shaul et al. (2024) "Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution" Lou et al. (2024)

Example: code generation mask model (1.7B)

def	bina	ry	_s	ea	rch	(arr,	x):
		#	ΤĒ	57	10	arosta	
		#	ΤΤ	X	LS	greale	;1
		#	If	X	is	smalle	er
		el	se	:			

"Simple and Effective Masked Diffusion Language Models" Sahoo et al. (2024) "Simplified and Generalized Masked Diffusion for Discrete Data" Shi et al. (2024) "Discrete Flow Matching" Gat el al. (2024)

General Discrete Probability Paths

Given any (conditional) probability path $p_t(x)$, a kinetic optimal (conditional) velocity is:

$$u_t(y \mid x) = \frac{\mathsf{ReLU}(p_t(x)\dot{p}_t(y) - \dot{p}_t(x)p_t(y))}{p_t(x)}$$

E.g. Metric paths: $p_{t|1}(x|x_1) = \text{softmax}(-\beta_t d(x, x_1))$ $u_t(y | x, x_1) = p_{t|1}(x | x_1) \dot{\beta}_t \text{ReLU}(d(x, x_1) - d(y, x_1))$

))

CIFAR10

Method	$FID\downarrow$
D3PM (Austin et al., 2021)	7.34
CTDD (Nisonoff et al., 2024)	7.86
τ LDR-10 (Campbell et al., 2022)	3.74
DFM w/ mask (Gat et al., 2024)	3.63
DFM w/ metric (Ours)	3.43

ImageNet 256x256

Method	NFE	FID
LlamaGen (AR) (Sun et al., 2024)	256	5.46
LlamaGen (AR)* (Sun et al., 2024)	256	4.81
DFM - Mask* (Gat et al., 2024)	100	5.72
DFM - Metric (Ours)	100	4.50

FUDOKI: Multimodal w/ General Discrete Paths

Image Generation

Discrete flow matching denoises step by step, transforming noise into vivid images.

"FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities" Wang et al. (2025)

Edit Flows

Imbuing diffusion with dimensional changes

Designing a model for variable length sequences

State space

$$X \in \bigcup_{n=0}^{N} \mathcal{T}^n$$

Data contains variable length sequences

Forcefully aligning tokens doesn't make sense for sequence generation

- Requires padding with <EOS> to handle variable length generation - Makes the model over-confident in predicting <EOS>

Designing a model for variable length sequences

State space

$$X \in \bigcup_{n=0}^{N} \mathcal{T}^n$$

Levenshtein Transformer

Data contains variable length sequences

Jiatao Gu[†], Changhan Wang[†], and Jake Zhao (Junbo)[‡] [†]Facebook AI Research [‡]New York University ^oTigerobo Inc. [†]{jgu, changhan}@fb.com[‡]jakezhao@cs.nyu.edu

VERY rough description of some prior works:

- Train on an (ordered) sequence of edit operations
- 2-stage model to predict # edits, use causal mask model to predict tokens

Insertion Transformer: Flexible Sequence Generation via Insertion Operations

Mitchell Stern¹² William Chan¹ Jamie Kiros¹ Jakob Uszkoreit¹

Preprint

DIFFUSER: DISCRETE DIFFUSION VIA EDIT-BASED RECONSTRUCTION

Machel Reid Google Research* machelreid@google.com

Graham Neubig Language Technologies Institute, Carnegie Mellon University Inspired Cognition gneubig@cs.cmu.edu

Vincent J. Hellendoorn Software and Societal Systems Department Carnegie Mellon University vhellendoorn@cmu.edu

Designing a model for variable length sequences

Sampling process

$$\begin{split} u_t^{\theta}(\mathbf{ins}(x,i,a)|x) &= \lambda_{t,i}^{\mathbf{ins}}(x)Q_{t,i}^{\mathbf{ins}}(a|x) \\ u_t^{\theta}(\mathbf{del}(x,i)|x) &= \lambda_{t,i}^{\mathbf{del}}(x) \\ u_t^{\theta}(\mathbf{sub}(x,i,a)|x) &= \lambda_{t,i}^{\mathbf{sub}}(x)Q_{t,i}^{\mathbf{sub}}(a|x) \end{split}$$

State space

$$X \in \bigcup_{n=0}^{N} \mathcal{T}^n$$

Data contains variable length sequences

Inputs / Outputs

CTMC Model

for $i \in \{1, ..., n(x)\}$ for $i \in \{1, ..., n(x)\}$ for $i \in \{1, ..., n(x)\}$

Define unique set of edits via alignments

 (Z_0, Z_1) defines a unique set of edit operations to map X_0 to X_1

Discrete Flow Matching with auxiliary variables

$$\mathcal{L}(\theta) \stackrel{\text{MC}}{\approx} \sum_{x \neq x_t} u_t^{\theta}(x|x_t) - \frac{\kappa_t}{1 - \kappa_t} \left[\log u \right]$$

Inherits similar optimality as continuous space

Training (X_0, X_1) pairs

$\pi(x_1|x_0)$

	AAAA -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	AAAB -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	AABA -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	AABB -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	ABAA -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	ABAB -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	ABBA -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
0	ABBB -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
×	BAAA -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	BAAB -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	BABA -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	BABB -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	BBAA -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	BBAB -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	BBBA -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
	BBBB -	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
		- A	AB -	3A -	3B -	- A	AB -	3A -	3B -	- A	AB -	3A -	3B -	- A	AB -	3A -	3B -
		AAA	AAA	AAE	AAE	AB4	AB⁄	ABE	ABE	BA∕	BAA	BAE	BAE	BB/	BB/	BBE	BBE
		X ₁															

Learned model will try to minimize the number of edits! Maps nearby (X_0, X_1) .

Generated (X_0, X_1) pairs

 $p^{\theta}(x_1|x_0)$

							X	1									
AAAA	AAAB	AABA	AABB	ABAA	ABAB	ABBA	ABBB	BAAA	BAAB	BABA	BABB	BBAA	BBAB	BBBA	BBBB		
0.01	0.02	0.03	0.04	0.02	0.05	0.06	0.09	0.02	0.05	0.05	0.11	0.04	0.10	0.10	0.21		0.000
0.03	0.03	0.03	0.04	0.04	0.04	0.07	0.06	0.05	0.05	0.08	0.07	0.10	0.10	0.12	0.09		- 0.025
0.02	0.03	0.04	0.05	0.04	0.06	0.05	0.06	0.04	0.08	0.06	0.10	0.07	0.10	0.08	0.11		0.005
0.05	0.04	0.05	0.03	0.08	0.04	0.07	0.03	0.11	0.06	0.07	0.05	0.11	0.07	0.10	0.05		- 0.050
0.02	0.05	0.04	0.07	0.05	0.07	0.05	0.08	0.03	0.07	0.07	0.10	0.04	0.08	0.07	0.10		
0.06	0.04	0.07	0.04	0.07	0.05	0.05	0.03	0.09	0.08	0.09	0.06	0.09	0.07	0.06	0.05		- 0.075
0.06	0.08	0.05	0.06	0.05	0.06	0.05	0.06	0.07	0.10	0.06	0.06	0.07	0.07	0.05	0.04		
0.03	0.06	0.05	0.10	0.04	0.08	0.07	0.13	0.02	0.05	0.04	0.09	0.09	0.07	0.06	0.09		0.100
0.06	0.06	0.08	0.07	0.07	0.06	0.09	0.06	0.06	0.06	0.07	0.05	0.06	0.05	0.07	0.04		
0.05	0.08	0.07	0.10	0.05	0.09	0.07	0.07	0.04	0.06	0.05	0.07	0.05	0.06	0.05	0.04		- 0.125
0.13	0.07	0.09	0.05	0.10	0.06	0.07	0.03	0.09	0.06	0.07	0.04	0.07	0.03	0.04	0.01		0.150
0.05	0.11	0.07	0.11	0.04	0.09	0.06	0.10	0.02	0.06	0.04	0.07	0.03	0.04	0.04	0.05		- 0.150
0.11	0.10	0.11	0.07	0.09	0.06	0.06	0.04	0.06	0.06	0.05	0.04	0.05	0.03	0.04	0.02		- 0.175
0.12	0.13	0.08	0.10	0.07	0.08	0.05	0.05	0.06	0.07	0.05	0.04	0.03	0.04	0.02	0.02		0 175
0.23	0.11	0.11	0.04	0.10	0.05	0.04	0.02	0.10	0.05	0.04	0.02	0.05	0.02	0.01	0.01		0.200
						-											

Image Captioning

Method	$\mathbf{M}_{\mathbf{x}}^{\mathbf{x}}$	S COCO		Image Captioning 3M			
meenou	METEOR	CIDEr	SPICE	ROUGE-L	CIDEr	SPICE	
VLP^{\dagger} (Zhou et al., 2020)	28.4	117.7	21.3	24.3	77.5	16.5	
$\operatorname{ClipCap}^{\dagger}$ (Mokady et al., 2021)	27.1	108.3	20.1	26.7	87.2	18.5	
Autoregressive	25.7	95.5	19.6	25.2	85.8	17.8	
Mask DFM	25.3	95.6	19.2	27.4	96.2	20.3	
Edit Flow (Ours)	27.4	108.1	21.1	29.0	101.9	21.7	
Localized Edit Flow ($Ours$)	27.4	105.1	22.1	28.3	99.7	20.8	

www.shutterstock.com · 740025463

floor

www.shutterstock.com · 695915347

tree

camera

Text & Code Generation (1.3B)

Insert-only

def is_prime(n: int) -> bool:

Met ____

Aut Mas

Edit Edit

Non-AR

Table 3 Code generation benchmarks using 1.3B parameter models trained on the CodeLlama (Roziere et al., 2023) datamix. [†]Superscript denotes our own implementation. We highlight the best non-autoregressive models, where colors show the best and second best among each metric.

Insert + Delete + Substitute def is_prime(n: int) -> bool: if n <= 1: return True for i in range(2, n): if i % n == 0: return True return False

thod	HellaSwag	ARC-E	ARC-C	PIQA	OBQA	WinoGrande
oregressive	49.5	71.0	36.3	76.0	30.4	62.1
m sk~DFM	38.3	55.4	27.8	65.3	22.6	52.3
t Flow (CFG applied to u_t) (Ours)	49.0	63.1	33.0	68.8	28.6	53.6
t Flow (CFG applied to \mathcal{L}) (Ours)	54.5	61.0	34.0	65.0	37.2	54.3

Table 2 Zero-shot text benchmarks using 1.3B parameter models trained on DCLM-baseline 1.0 (Li et al., 2024). Colors show the best and second best among each metric.

Method	Huma	anEval	Huma	nEval+	MBPP		
louiou	Pass@1	Pass@10	Pass@1	Pass@10	Pass@1	Pass@10	
Autoregressive (Gat et al., 2024)	14.3	21.3			17.0	34.3	
Autoregressive [†]	17.0	34.7	14.0	28.6	25.6	45.4	
Mask DFM (Gat et al., 2024)	6.7	13.4			6.7	20.6	
Mask DFM (Oracle Length) (Gat et al., 2024)	11.6	18.3			13.1	28.4	
Mask DFM [†]	9.1	17.6	7.9	13.4	6.2	25.0	
Uniform $X_0 + \text{Edit Flow}$ (Ours)	9.7	24.3	9.7	19.5	9.4	33.4	
Edit Flow (Ours)	12.8	24.3	10.4	20.7	10.0	36.4	
Localized Edit Flow (Ours)	14.0	22.6	10.4	18.9	14.8	34.0	

Summary: Jumps with the Flow Matching recipe! $u_t(\cdot \mid X_t) = \lambda_t(X_t)Q_t($ $\cdot | X_t)$ Jump rate Normalized **Unnormalized distribution** Jump process (sampling) X_0 $\leq U[0,1]$ otherwise $X_{t+h} = X_t$ Learn conditional expectation $Y_t(\cdot | X_t, X_1) | X_t = x$

$$X_{t+h} \sim \delta_{X_t}(\cdot) + h u_t(\cdot | X_t)$$

$$X_{t+h} \sim Q_t(\cdot | X_t) \quad \text{if } h\lambda_t(X_t)$$

$$u_t(\cdot \mid x) = \mathbb{E}\left[u_t\right]$$

Collaborators

Marton Havasi

Itai Gat

Tal Remez

Felix Kreuk

Meta