
Unlocking Dis ties in Flow Models:
Jumps, Control Flow, Insertions, Deletions, etc

Ricky T. Q. Chen

@ CVPR25 Workshop on Visual Generative Modeling: What’s After Diffusion?

con
tinui

🤔

About me and this talk

Data-driven

- fit to data

- simple & scalable

Meta MovieGenFlow Matching

Data-driven

- fit to data

- simple & scalable

Reward-driven

- maximize reward

- no data available

Adjoint Matching Adjoint Sampling

Meta MovieGenFlow Matching

About me and this talk

Data-driven

- fit to data

- simple & scalable

Meta MovieGen

- Generator Matching

- Discrete Flow Matching

- Edit Flows

Flow Matching

This Talk

About me and this talk

Generator Matching

Extending the Flow Matching recipe to jump Markov processes

ℝd

The Generative Modeling problem

The Generative Modeling problem

p q

X0 ∼ p

ℝd

X1 ∼ q

The Generative Modeling problem

q

X1 ∼ q

X0 ∼ p

ℝd

p

Continuous-time Interpolation

The Generative Modeling problem

q

X1 ∼ q

X0 ∼ p

ℝd

p

Continuous-time Interpolation

uθ
t

Parameterization Sampling

A vector field that

points towards the data

uθ
t

dXt = uθ
t (Xt)dt + σtdBtdXt = uθ

t (Xt)dt

A diffusion process with

(optional) diffusion coefficient

Xt

σt

Ordinary Differential Equation Stochastic Differential Equation

Continuous-time Markov Processes

X0 ∼ p

Xt+h ∼ pt+h|t (⋅ , Xt)pt+h|t

Transition kernel

Continuous-time Markov Processes

DiffusionFlow
Local perturbations only

X0 ∼ p

Xt+h ∼ pt+h|t (⋅ , Xt)pt+h|t

Transition kernel

Generalizing beyond local perturbations

DiffusionFlow Jump

𝒮 = ℝd

𝒮 = 𝒟

CTMC

Local perturbations only 🤩

Infinitesimal Generator
Generalize the notion of first-order characterization

Generator

pt+h|t (⋅ , Xt) = δXt
+ h

d
dh h=0

pt+h|t(⋅ , Xt) + o(h)

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

 order1st order0th error

https://arxiv.org/abs/2410.20587

First-order characterizations

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

 order1st order0th error

ODE:

SDE:

Jump &

CTMC:

 order1st order0th error

 order1st order0th error

Xt+h = Xt + hut(Xt)+o(h)

Xt+h = Xt + hut(Xt)+ hσtε + o(h)

Xt+h ∼ δXt
(⋅) + hut(⋅ |Xt)+o(h)

https://arxiv.org/abs/2410.20587

Jump Markov process

Xt+h ∼ δXt
(⋅) + hut(⋅ |Xt)

Interpret ut(⋅ |Xt) = λt(Xt)Qt(⋅ |Xt)

Unnormalized distribution

NormalizedJump rate

Jump process (sampling)

Xt+h = Xt

Xt+h ∼ Qt(⋅ |Xt) if hλt(Xt) ≥ U[0,1]

otherwise

x1

Generate a single target point

Build flow from conditional flows

ut(x |x1)

pt|1(x |x1) conditional probability

conditional velocity

Xt = (1 − t)X0 + tX1

x1

Generate a single target point

ut(x) = 𝔼[ut(Xt |X1) Xt = x]ut(Xt |X1)

pt(x) = 𝔼X1
pt|1(x |X1)pt|1(x |X1)

Build flow from conditional flows

ut(x |x1)

pt|1(x |x1) conditional probability

conditional velocity
average

Xt = (1 − t)X0 + tX1

Building generator from conditional generators

pt|1(x |x1)

x1

conditional probability

conditional generator
"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

Identical recipe as the flow case…

ut(⋅ |x, x1)

https://arxiv.org/abs/2410.20587

Building generator from conditional generators

ut(⋅ |x) = 𝔼[ut(⋅ |Xt, X1) Xt = x]ut(⋅ |Xt, X1)

pt(x) = 𝔼X1
pt|1(x |X1)pt|1(x |X1)

ut(⋅ |x, x1)

pt|1(x |x1)

x1

conditional probability

conditional generator
average

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

Generate a single target point
Identical recipe as the flow case…

https://arxiv.org/abs/2410.20587

The Marginalization Trick

Theorem: The marginal generator generates the marginal probability path.

ut(x) = 𝔼[ut(Xt |X1) | Xt = x] pt(x) = 𝔼X1
pt|1(x |X1)

"Flow Matching for Generative Modeling" Lipman el al. (2022)

ut(⋅ |x) = 𝔼[ut(⋅ |Xt, X1) | Xt = x]

Flow and diffusion:

Jump and CTMC:

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2410.20587

Flow Matching Loss
• Flow Matching loss:

• Conditional Flow Matching loss:

ℒFM(θ) = 𝔼t,Xt
uθ

t (Xt) − ut(Xt) 2ut(Xt)

ℒCFM(θ) = 𝔼t,X1,Xt
uθ

t (Xt) − ut(Xt |X1) 2ut(Xt |X1)

Theorem: Losses are equivalent,

∇θℒFM(θ) = ∇θℒCFM(θ)

• Flow Matching loss:

• Conditional Flow Matching loss:

ℒFM(θ) = 𝔼t,Xt
D(ut(Xt) , uθ

t (Xt))ut(Xt)

Generalized Flow Matching Loss

Theorem: Losses are equivalent if and only if is a Bregman divergence. D

∇θℒFM(θ) = ∇θℒCFM(θ)

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

ℒCFM(θ) = 𝔼t,X1,Xt
D(ut(Xt |X1) , uθ

t (Xt))ut(Xt |X1)

https://arxiv.org/abs/2410.20587

Generalized Flow Matching Loss

Theorem: Losses are equivalent iff is a Bregman divergence. D

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

∇θ 𝔼X,YD(Y, gθ(X)) = ∇θ 𝔼XD(𝔼[Y | X] , gθ(X))𝔼[Y | X]Y

D(a, b) = ϕ(a) − [ϕ(b) + ⟨a − b, ∇ϕ(b)⟩]

• Includes MSE, ELBO, many many possible instantiations …

https://arxiv.org/abs/2410.20587

Different sample paths

Probability Path

Flow

Jump

Flow
+Jump

Toy problem illustration

Ground
truth

Different sample paths Same probability path

Ground
truth

Flow

Jump

Flow
+Jump

Toy problem illustration
Probability Path

Markov jump model

Markov superpositions show
synergistic effects of two models!

Markov superposition

Large unexplored design space!

Image Generation

Flow model

Jump model

Flow
+ jump
model

Manifold jump model on SO(3).

Make multimodal: Combine
continuous and discrete models

FrameJump : Protein Generation

Discrete Flow Matching

Discrete space diffusion, general corruption processes

Continuous-time Markov Chains (CTMC)

• State space : sequences of tokens

•

𝒳 = 𝒯d

x = (x1, x2, …, xd) ∈ 𝒳

x = (x1, x2)

y

p q

“Discrete Flow Matching” Gat el al. (2024)

“Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design” Campbell et al. (2024)

pt+h|t(⋅ , Xt) = δXt
(⋅) + h ut(⋅ |Xt) + o(h)

ut(y |x)

Unnormalized

distribution over 𝒳

https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2402.04997

Factorized velocity
ut(x) = [u1

t (x), …, ud
t (x)]

Similar to continuous case :𝒮 = ℝd

Example:

d ≈ 1000, |𝒯 | ≈ 50000

“A Continuous Time Framework for Discrete Denoising Models” Campbell et al. (2022)

ui
t(yi |x)

ut(⋅ |x) ∈ ℝd|𝒯|

x

ut(⋅ |x) ∈ ℝ𝒯d

y

x

Intractable

https://arxiv.org/abs/2205.14987

Build (factorized) velocities

x1

ui
t(yi, x |x0, x1) =

1
1 − t [δ(xi

1, xi) − δ(yi, xi)]

pt(x) = …

ui
t(yi |x) = … ui

t(yi |xi, x1) =
1

1 − t
δxi

1
(yi) yi ≠ xi

pi
t|1(x

i |x1) = (1 − t)p(xi) + tδ(xi, xi
1)

Xi = {xi
0 with prob 1 − t

xi
1 with prob t

“Discrete Flow Matching” Gat el al. (2024)

“Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design” Campbell et al. (2024)

average

Mixture path

jump rate where to jump

https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2402.04997

Discrete Flow Matching

pt(x) (Xt)0≤t≤1

"Flow Matching with General Discrete Paths: A Kinetic-Optimal Perspective” Shaul et al. (2024)

“Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution” Lou et al. (2024)

“Discrete Flow Matching” Gat el al. (2024)

https://arxiv.org/abs/2412.03487v1
https://arxiv.org/abs/2310.16834
https://arxiv.org/abs/2407.15595

Example: code generation mask model (1.7B)

“Discrete Flow Matching” Gat el al. (2024)

"Simple and Effective Masked Diffusion Language Models" Sahoo et al. (2024)
"Simplified and Generalized Masked Diffusion for Discrete Data" Shi et al. (2024)

https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2406.07524
https://arxiv.org/abs/2406.04329

General Discrete Probability Paths

"Flow Matching with General Discrete Paths: A Kinetic-Optimal Perspective" Shaul el al. (2024)

Given any (conditional) probability path ,
a kinetic optimal (conditional) velocity is:

pt(x)

ut(y |x) =
ReLU(pt(x) ·pt(y) − ·pt(x)pt(y))

pt(x)

ImageNet 256x256

CIFAR10

E.g. Metric paths:

ut(y |x, x1) = pt|1(x |x1)
·βtReLU(d(x, x1) − d(y, x1))

pt|1(x |x1) = softmax(−βtd(x, x1))

https://arxiv.org/abs/2412.03487

FUDOKI: Multimodal w/ General Discrete Paths

"FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities" Wang et al. (2025)

https://fudoki-hku.github.io/

Edit Flows

Imbuing diffusion with dimensional changes

Designing a model for variable length sequences

State space

X ∈
N

⋃
n=0

𝒯n

Data contains

variable length

sequences

x

Forcefully aligning tokens doesn’t make sense for sequence generation

 - Requires padding with <EOS> to handle variable length generation

 - Makes the model over-confident in predicting <EOS>

Designing a model for variable length sequences

State space

X ∈
N

⋃
n=0

𝒯n

Data contains

variable length

sequences

VERY rough description of some prior works:

 - Train on an (ordered) sequence of edit operations

 - 2-stage model to predict # edits, use causal mask model to predict tokens

Designing a model for variable length sequences

CTMC Model

Sampling process Inputs / Outputs

State space

X ∈
N

⋃
n=0

𝒯n

Data contains

variable length

sequences

Define unique set of edits via alignments

Multiple ways to map to Xt X1 Intractable to construct ut(x |Xt, X1)

Alignments

Z ∈ 𝒯N

Fixed-length (padded) sequences

 defines a unique set of edit operations to map to (Z0, Z1) X0 X1

Discrete Flow Matching with auxiliary variables

Inherits similar optimality as continuous space

Training pairs(X0, X1) Generated pairs(X0, X1)

Learned model will try to minimize the number of edits! Maps nearby .(X0, X1)

Image Captioning

Text & Code Generation (1.3B)

Summary: Jumps with the Flow Matching recipe!

Xt+h ∼ δXt
(⋅) + hut(⋅ |Xt) ut(⋅ |Xt) = λt(Xt)Qt(⋅ |Xt)

Unnormalized distribution NormalizedJump rate

Learn conditional expectation

ut(⋅ |x) = 𝔼[ut(⋅ |Xt, X1) | Xt = x]

Jump process (sampling)

Xt+h = Xt

Xt+h ∼ Qt(⋅ |Xt) if hλt(Xt) ≤ U[0,1]

otherwise

Collaborators

