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ABSTRACT

Mapping between discrete and continuous distributions is a difficult task and
many have had to resort to approximate or heuristical approaches. We propose
a tessellation-based approach that directly learns quantization boundaries on a
continuous space, complete with exact likelihood evaluations. This is done through
constructing normalizing flows on convex polytopes defined via a differentiable
tessellation. Using a simple homeomorphism with an efficient log determinant
Jacobian, we can then cheaply parameterize distributions on bounded domains.
We explore this approach in two application settings, mapping from discrete to
continuous and vice versa. Firstly, a Voronoi dequantization allows automatically
learning quantization boundaries in a multidimensional space. The location of
boundaries and distances between regions can encode useful structural relations
between the quantized discrete values. Secondly, a Voronoi mixture model has
constant computation cost for likelihood evaluation regardless of the number of
mixture components. Empirically, we show improvements over existing meth-
ods across a range of structured data modalities, and find that we can achieve a
significant gain from just adding Voronoi mixtures to a baseline model.

1 INTRODUCTION

Likelihood-based models have seen increasing usage across multiple data modalities. In particular,
the family of normalizing flows stands out as a large amount of structure can be incorporated into the
model, aiding its usage in modeling a wide variety of domains such as images [7, 22], graphs [28],
invariant distributions [24, 2] and molecular structures [40]. However, the majority of works focus on
only continuous functions and continuous random variables. This restriction can make it difficult
to apply such models to distributions with implicit discrete structures. In this work, we incorporate
discrete structure into standard normalizing flows, while being entirely composable with any other
normalizing flow. Specifically, we propose a homeomorphism between an unbounded domain and a
convex polytope—defined through a learnable tessellation of the domain. This homeomorphism is
cheap to compute, has a cheap inverse, and we additionally provide an efficient and exact formulation
of the resulting change in density. In other words, this transformation is highly scalable.
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Figure 1: We propose an invertible mapping f between RD and a convex polytope, which is
parameterized based on a differentiable Voronoi tessellation of RD. This mapping adds discrete
structure into normalizing flows, and its inverse f−1 and log determinant Jacobian can both be
efficiently computed for high dimensions.

1



Published as a workshop paper at Deep Generative Models for Highly Structured Data 2022

2 PRELIMINARIES

Normalizing Flows. This family of generative models [34, 23] typically includes any model that
makes use of invertible transformations f to map samples between distributions. The relationship
between the original and transformed density functions have a closed form expression,

pz(f(x)) = px(x)
∣∣∣det ∂f(x)

∂x

∣∣∣−1

. (1)

If the domain and codomain of f are different, then px and pz can have different supports, i.e. regions
where probability is non-zero. However, existing designs of f that have this property only act in a
single dimension. The use of general support-modifying invertible transformations have not been
discussed extensively in the literature.

Dequantization. When modeling discrete data with density models, standard approaches typically
rely on dequantization methods. These methods provide a correspondence between discrete values
and continuous sub-spaces, where a discrete variable y ∈ Y is randomly placed within a disjoint
subset of RD [42].

Let Ay denote the subspace corresponding to the value of y and let q(x|y) be the dequantization
model which has a bounded support in Ay . Then a density model p(x) with support over RD satisfies

log p(y) ≥ Ex∼q(x|y)
[
log(1[x∈Ay ]p(x))− log q(x|y)

]
= Ex∼q(x|y) [log p(x)− log q(x|y)]

(2)

Thus with an appropriate choice of dequantization, maximizing the likelihood under the density
model p(x) is equivalent to maximizing the likelihood under the discrete model p(y).

To the best of our knowledge, in all existing dequantization methods, the value of D and the choice
of subsets Ay are entirely dependent on the type of discrete data (ordinal vs non-ordinal) and the
number of discrete values |Y| in the non-ordinal case. Furthermore, the subsets Ay do not interact
with one another and are fixed during training. In contrast, we conjecture that important properties
such as (dis)similarities between discrete values should be modeled as part of the parameterization
of Ay , and that it’d be useful to be able to automatically adapt these subsets Ay based on gradients
from p(x).

Disjoint mixture models. Building mixture models is one of the simplest methods for creating
more flexible distributions from simpler one. However, in practice it is computationally expensive
for large number of mixture components, because evaluating the likelihood under a mixture model
requires evaluating the likelihood of each component. To alleviate this issue, Dinh et al. [8] recently
proposed to use components with disjoint support. In particular, let {Ak}Kk=1 be disjoint subsets of
RD, such that each mixture component is defined on one subset and has support restricted to that
particular subset. The likelihood of the mixture model then simplifies to

p(x) =

K∑
k=1

p(x|k)p(k) =
K∑

k=1

1[x∈Ak]p(x|k)p(k) = p(x|k = g(x))p(k = g(x)) (3)

where g : RD → {1, . . . ,K} is a set identification function that satisfies x ∈ Ag(x). This framework
allows building large mixture models while no longer having a compute cost that scales with K. In
contrast to variational approaches with discrete latent variables, the use of disjoint subsets provides
an exact log-likelihood and not a lower bound.

3 VORONOI TESSELLATION FOR NORMALIZING FLOWS

We separate the domain into subsets through a Voronoi tessellation [46]. This induces a correspon-
dence between each subset and a corresponding anchor point, which provides a parameterization of
the tessellation for gradient-based optimization.

Let X = {x1, . . . , xK} be a set of anchor points in RD. The Voronoi cell for each anchor point is
given by

Vk ≜ {x ∈ RD : ∥xk − x∥ < ∥xj − x∥ , j = 1, . . . ,K}, (4)
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Figure 2: Existing dequantization methods can be seen as special cases of Voronoi dequantization
with fixed anchor points. In additional to decoupling the dimension of the embedding space from the
number of discrete values, the Voronoi dequantization can learn to model the similarities of discrete
values through the positions and boundaries of their Voronoi cells.

i.e. it defines a subspace containing all points which have the anchor points as its nearest neighbor.
This subspace can equivalently be expressed in the form of a convex polytope,

Vk = {x ∈ RD : Ax < b},
where Ai = 2(xi − xk)

T, bi = ∥xi∥2 − ∥xk∥2 .
(5)

For simplicity, we also include box constraints so that all Voronoi cells are bounded in all directions.

Vk = {x ∈ RD : Ax < b, cl < x < cr} (6)

Thus, the learnable parameters of this Voronoi tessellation are the anchor points {x1, . . . , xK}, and
the box constraints cl, cr ∈ RD.

3.1 INVERTIBLE MAPPING ONTO THE VORONOI CELL

Given a cell Vk for some k ∈ {1, . . . ,K}, we construct an invertible mapping fk : RD → Vk by the
following 2-step procedure.

Let x ∈ RD. If x = xk, the anchor point of Vk, we simply set fk(x) = x. Otherwise, the first step
is as follows:

1. Find where the ray that starts from xk in the direction of x intersects with the boundary of Vk.

Since Vk is a convex polytope, we can frame this as a linear programming problem. First define the
direction δk(x) ≜

x−xk

∥x−xk∥ and the ray x(λ) ≜ xk + λδk(x), with λ > 0. Then this problem can be
solved through the following linear program:

maxλ s.t. x(λ) ∈ Vk, λ ≥ 0 (7)

Let λ∗ be the solution. This first step solves for the farthest point in the Voronoi cell in the direction
of x. Using this knowledge, we can now map all points that lie on this ray onto the Voronoi cell.

1. Apply an invertible transformation such that any point on the ray {x(λ) : λ > 0} is mapped onto
the line segment {xk + α(x(λ∗)− xk) : α ∈ (0, 1)}.

There are many possible choices for designing this transformation. An intuitive choice is to use a
monotonic transformation of the distance from x to the anchor point xk.

fk(x) ≜ xk + αk

(
∥x− xk∥

∥x(λ∗)− xk∥

)
(x(λ∗)− xk) (8)

where αk is an appropriate invertible squashing function from R+ to (0, 1). In our experiments, we
use αk(h) = softsign(γkh) where γk is a learned cell-dependent scale.

Remarks The problem in Equation (7) can be solved exactly and without the use of an iterative
convex optimization solver, which also provides analytical derivatives of the solution. The inverse
computation shares the same first step of this procedure. Finally, we provide a method of computing
the exact log determinant Jacobian that only involves dot products, thus efficiently scaling with the
number of dimensions. See detailed explanations of these remarks and propositions in Appendix A.
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Target PMF Discrete Flow Voronoi Flow Target PMF Discrete Flow Voronoi Flow

Figure 3: 2D quantized toy data. Voronoi Flows can model complex relations between discrete
values. Each of the two discrete variables have 91 possible values, and no knowledge of ordering is
given to the models.

Data Baseline Voronoi Samples Data Baseline Voronoi Samples

Figure 4: Tessellation can be done in a transformed space; nonlinear boundaries are shown.

Applications We apply this approach to dequantization—which maps from discrete variables to
continuous variables—and disjoint mixture modeling—which maps from continuous to discrete.
Importantly, all existing dequantization boundaries are special cases of Voronoi tessellations (see
Figure 2). Our approach allows us to directly parameterize and learn these boundaries through just
gradient-based optimization. Detailed explanations are in Appendix B.

4 EXPERIMENTS

Additional experiments regarding permutation-invariant itemset modeling and language modeling are
in Appendix D.

Voronoi dequantization We start by considering synthetic distribution over two discrete variables,
to compare against Discrete Flows [43]. Figure 3 shows the target probability mass functions, which
are created by a 2D distribution where each dimension is quantized into 91 discrete values. Though
the data is ordinal, no knowledge of ordering is given to the models. We see that Discrete Flows
has trouble fitting these, presumably because it is difficult to rearrange the target distribution into a
factorized distribution. We also show results on UCI discrete data sets in Table 2.

Voronoi mixture models We trained disjoint mixture models using the inverse of our transforma-
tion, where data is mapped from each bounded Voronoi cell onto the unbounded space, which is
then composed with a conditional normalizing flow model. Results are shown in Section 3.1. The
boundaries are nonlinear as it is done after a nonlinear transformation.

Method Connect4 Forests Mushroom Nursery PokerHands USCensus90

Voronoi Deq. 12.92±0.07 14.20±0.05 9.06±0.05 9.27±0.04 19.86±0.04 24.19±0.12

Simplex Deq. 13.46±0.01 16.58±0.01 9.26±0.01 9.50±0.00 19.90±0.00 28.09±0.08

BinaryArgmax Deq. 13.71±0.04 16.73±0.17 9.53±0.01 9.49±0.00 19.90±0.01 27.23±0.02

Discrete Flow 19.80±0.01 21.91±0.01 22.06±0.01 9.53±0.01 19.82±0.03 55.62±0.35

Table 1: Discrete UCI data sets. Negative log-likelihood results on the test sets in nats.
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A ADDITIONAL REMARKS AND PROPOSITIONS

Box constraints. There can be continuity problems if a Voronoi cell is unbounded, as the solution
to Equation (8) does not exist if x(λ∗) diverges. Furthermore, when solving Equation (7) it can be
difficult to numerically differentiate between an unbounded cell and one whose boundaries are very
far away. It is for these reasons that we introduce box constraints (Equation 6) in the formulation of
Voronoi cells which allows us to sidestep these issues for now.

Solving for λ∗. While Equation (7) can be solved using a convex optimization library, this approach
is prone to numerical errors and requires differentiating through convex optimization solutions for
gradient-based learning [1]. We instead note that the solution of Equation (7) can be expressed in
closed form, since it is always going to be the intersection of the ray x(λ) and a linear constraint.

Let aT
i x = bi be the plane that represents one of the linear constraints in Equation (6). Let λi be

the intersection of this plane with the ray, i.e. it is the solution to aT
i x(λi) = bi. This can be solved

exactly as

λi =
bi − aT

i xk

aT
i δk(x)

. (9)

Then the solution is simply the smallest positive λi, which satisfies all the linear constraints, λ∗ =
min{λi : λi > 0}. There are a total of K + 2D − 1 linear constraints, including the Voronoi cell
boundaries and box constraints, which can be computed fully in parallel.

Automatic differentiation. Note that the above formulation of the solution λ∗ also provides
gradients dλ∗

dδk(x)
through automatic differentiation, since it only involves primitive operations. This

allows end-to-end differentiation of the mapping fk, and will allow us to learn the parameters of fk,
i.e. parameters of αk and the Voronoi tessellation.

Proposition 1. The mapping fk : RD → Vk as defined in the 2-step procedure is a homeomorphism.

That is to say, fk is a bijection, and both fk and f−1
k are continuous. This allows us to use fk within

the normalizing flows framework, as a mapping between a distribution px defined on RD and the
transformed distribution pz on Vk, with change in density given by

pz(fk(x)) = px(x)

∣∣∣∣det dfk(x)dx

∣∣∣∣−1

. (10)

Proposition 2. If px(x) is continuous, then the transformed density pz(fk(x)) is continuous almost
everywhere.

This comes from the Jacobian being continuous a.e.

A.1 COMPUTING THE INVERSE MAPPING

We will also be using the inverse mapping f−1
k : Vk → RD, so we next describe how to compute this.

Let z = fk(x).

Conveniently, since both x and z lie on the ray {x(λ) : λ > 0}, we know δk(x) = δk(z). So the
first step is the same as the forward procedure: we solve for λ∗ and x(λ∗). Following this, we then
recover x by inverting Step 2 of the forward procedure.

This inverse transformation is given by

α̃ =
z − xk

x(λ∗)− xk
(11)

∆̃ = α−1
k (α̃1) (12)

∆ = ∆̃ ∥x(λ∗)− xk∥ (13)
x = ∆δk(z) + xk (14)

8
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Equation (11) is an element-wise division. Since α̃ will the same in all dimensions, we can simply
pick a dimension in Equation (12). In our experiments, the inverse α−1

k can be computed analytically,
though since it is just a scalar function, simple methods like bisection can also work when the inverse
is not known analytically. Lastly, Equation (14) follows from the observation that δk(x) = δk(z).

A.2 EFFICIENT COMPUTATION OF THE LOG DET JACOBIAN

As fk is a mapping in D dimensions, computing the log determinant Jacobian for likelihood com-
putation can be costly and will scale poorly with D if computed naı̈vely. Instead, we note that the
Jacobian of fk is highly structured.

Intuitively, because fk depends only on the direction δk(x) and the distance away from xk, it only
has two degrees of freedom regardless of D. In fact, the Jacobian of fk can be represented as a rank-2
update on a scaled identity matrix. This allows us to use the matrix determinant lemma to reformulate
the log determinant Jacobian in a compute- and memory-efficient form. We summarize this in a
proposition.

Proposition 3. Let the transformation fk(x) and all intermediate quantities be as defined in Sec-
tion 3.1 for some given input x. Then the Jacobian factorizes as

∂fk(x)

∂x
= cI + u1v

T
1 + u2v

T
2 (15)

for some c ∈ R, ui ∈ RD, vi ∈ RD, and its log determinant has the form

log

∣∣∣∣det ∂fk(x)∂x

∣∣∣∣
= log |1 + w11|+ log

∣∣∣∣1 + w22 −
w12w21

1 + w11

∣∣∣∣+D log c

(16)

where wij = c−1vTi uj . This expression for the log determinant only requires dot products between
vectors in RD. To reduce notational clutter, the exact formulas for c, u1, u2, v1, v2 can be found in
Appendix F.

Remark on computational cost. All vectors used in computing Equation (16) are either readily
available as intermediate quantities after computing fk(x), or are gradients of scalar functions and
can be efficiently computed through reverse-mode automatic differentiation. The only operations
on these vectors are dot products, and no large D-by-D matrices are ever constructed as part of any
intermediate steps. Compared to explicitly constructing the Jacobian matrix, this is more efficient in
both compute and memory and can readily scale to large values of D.

B APPLICATION SETTINGS

We discuss two applications of our method to likelihood-based modeling of discrete and continuous
data.

The first is a novel dequantization method that allows training a model of discrete data using density
models that normally only act on continuous variables such as normalizing flows. Compared to
existing dequantization methods [7, 36, 17], the Voronoi dequantization is not restricted to any
fixed-dimensional continuous space and can benefit from learning similarities between discrete values.
In fact, previous approaches can be seen as special cases of a Voronoi dequantization with fixed
equidistant anchor points.

The second is a novel formulation of disjoint mixture models, where each Voronoi cell represents a
single component in a large mixture model. To the best of our knowledge, disjoint mixture models
have not been explored significantly in the literature and have not been successfully applied in more
than a couple dimensions. Compared to an existing method [8], the Voronoi mixture model is not
restricted to acting individually for each dimension and we empirically show can scale to thousands
of dimensions.

9
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B.1 VORONOI DEQUANTIZATION

Let y be a discrete random variable with finite support Y . Then we can use Voronoi tessellation to
define subsets for dequantizing y as long as there are at least as many Voronoi cells—equivalently,
anchors points—as the number of discrete values, i.e. K ≥ |Y|. By assigning each discrete value
to a Voronoi cell, we can then define a dequantization model q(x|y) by first sampling from a base
(e.g. Gaussian) distribution z ∼ q(z|y) in RD and then applying the mapping x = fk(z) from
Section 3.1 to construct a distribution over Vk. We can then obtain probabilities q(x|y) efficiently
using Proposition 3 and train the dequantization alongside the density model p(x) on RD.

Automatic differentiation through p(x) and fk (as discussed in Appendix A) provides gradients for
training q(x|y), which include gradient with respect to parameters of the Voronoi tessellation. We are
also free to choose the number of dimensions D, where a smaller D induces dequantized distributions
that may be easier to fit while a larger D allows the anchor points and Voronoi cells more room to
change over the course of training.

Sampling from the model p(y|x) is straightforward and deterministic after sampling x. We can write
y = g(x) where g is the set identification function satisfying x ∈ Vg(x). From the definition of
Voronoi tessellation Equation (4), it is easy to see that g(x) is the nearest neighbor operation,

g(x) = argmin
k

∥x− xk∥ . (17)

Depending on the position of anchor points, we can recover the disjoint subsets used by prior methods
as special cases. We illustrate this in Figure 2.

B.2 VORONOI MIXTURE MODELS

Let {Vk} be a Voronoi tessellation of RD. Then a disjoint mixture model can be constructed by
defining distributions on each Voronoi cell. Here we make use of the inverse mapping f−1

k : Vk → RD

so that we only need to parameterize distributions over RD. Let x be a point in RD, our Voronoi
mixture model assigns the density

log pmix(x) = log pcomp(f
−1
k=g(x)(x)|k = g(x))

+ log

∣∣∣∣det ∂f−1
k (x)

∂x

∣∣∣∣
+ log p(k = g(x))

(18)

where pcomp can be any distribution over RD.

A Voronoi mixture model can also be viewed as a type of normalizing flow where, in addition to the
change of variable due to f−1

k , we also need to apply the change in density resulting from choosing
one out of K components, p(k). Per the observation of Dinh et al. [8], we have transformed x into a
tuple of a continuous variable z = f−1

k (x) and a discrete auxiliary variable k. A natural extension
is to repeatedly apply this transformation, effectively forming a deep mixture model [41, 45], and
resulting in a sequence of discrete auxiliary variables. This lets us define large mixture models
hierarchically without the need to create a tessellation with a large number of Voronoi cells. Crucially,
even though the number of mixture components increases exponentially with respect to depth, the
computational cost does not scale with the number of components.

We also provide a simple proposition that the resulting density function is amenable to gradient
descent.
Proposition 4. For any distribution p(k) with support over {1, . . . ,K}, define the mixture distribu-
tion,

p(x) =

K∑
k=1

p(x|k)p(k), (19)

where p(·|k) is the distribution mapped onto the Voronoi cell Vk (i.e. Equation 10) from a density
that is continuous. Then the density function of the mixture is continuous a.e.

Unlike Dinh et al. [8], we don’t need to worry about the density being discontinuous for certain
parameterizations.

10



Published as a workshop paper at Deep Generative Models for Highly Structured Data 2022

Dequantized samples for y0 Dequantized samples for y1

Figure 5: Dequantized samples from model trained on quantized 8gaussians data set. Each plot
shows samples from a single discrete variable, mapped onto a Voronoi tessellation of R2, along with
a kernel density estimator. The model learns to cluster discrete values with similar probability values.

C RELATED WORK

Normalizing flows for discrete data. Invertible mappings have been proposed for discrete data,
where discrete values are effectively rearranged from a factorized distribution. In order to param-
eterize the transformation, Hoogeboom et al. [16], van den Berg et al. [44] use quantized ordinal
transformations, while Tran et al. [43] takes a more general approach of doing modulo addition on
one-hot vectors. These approaches suffer from gradient bias due to the need to use discontinuous
operations and do not have universality guarantees since it’s unclear whether simple rearrangement is
sufficient to transform any joint discrete distribution into a factorized distribution. In contrast, the
dequantization approach provides a universality guarantee since the lower bound in Equation (2) is
tight when p(x)1[x∈Ay ] ∝ q(x|y), with a proportionality equal to p(y).

Dequantization methods. Within the normalizing flows literature, the act of adding noise was
originally used for ordinal data as a way to combat numerical issues [7]. Later on, appropriate
dequantization approaches have been shown to lower bound the log-likelihood of a discrete model [42,
15]. For non-ordinal data, many works have proposed simplex-based approaches. Early works on
relaxations [19, 31] proposed continuous distribution on the simplex that mimic the behaviors of
discrete random variables; however, these were only designed for the use with a Gumbel base
distribution. Potapczynski et al. [36] extend this to a Gaussian distribution—although it is not hard to
see this can work with any base distribution—by designing invertible transformations between RD

and the probability simplex with K vertices, with D = K − 1, where K is the number of classes of a
discrete random variable.

Intuitively, after fixing one of the logits, the softmax operation is an invertible transformation from
RK−1 to {x ∈ RK :

∑K
i xi = 1,xi > 0}. The (K− 1)-simplex can then be broken into K subsets,

each corresponding to a particular discrete value.

Ak = {x ∈ RK :
∑K

i=1xi = 1,xk > xi ∀i ̸= k}. (20)

More recently, Hoogeboom et al. [17] proposed ignoring the simplex constraint and simply use

Ak = {x ∈ RK : xk > xi ∀i ̸= k}, (21)

which effectively increases the number of dimensions by one compared to the simplex approach.
However, both simplex-based approaches force the dimension of the continuous space D to scale
with K. In order to make simplex-based dequantization work when K is large, they propose reducing
all discrete variables to a set of binary variables before applying dequantization. In contrast, Voronoi
dequantization has full flexibility is choosing D regardless of K.

A number of works [30, 27] also proposed removing the constraint that subsets are disjoint, and instead
work with general mixture models with unbounded support, relying on the conditional model p(y|x)
being sufficiently weak so that the task of modeling is forced onto a flow-based prior. Similar to
general approaches that combine normalizing flows with variational inference approaches [48, 18, 32],

11
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Method Connect4 Forests Mushroom Nursery PokerHands USCensus90

Voronoi Deq. 12.92±0.07 14.20±0.05 9.06±0.05 9.27±0.04 19.86±0.04 24.19±0.12

Simplex Deq. 13.46±0.01 16.58±0.01 9.26±0.01 9.50±0.00 19.90±0.00 28.09±0.08

BinaryArgmax Deq. 13.71±0.04 16.73±0.17 9.53±0.01 9.49±0.00 19.90±0.01 27.23±0.02

Discrete Flow 19.80±0.01 21.91±0.01 22.06±0.01 9.53±0.01 19.82±0.03 55.62±0.35

Table 2: Discrete UCI data sets. Negative log-likelihood results on the test sets in nats.

they have achieved good performance on a number of tasks. However, they lose the computational
savings and the deterministic decoder p(y|x) gained from using disjoint subsets. On the other hand,
quantization based on nearest neighbor have been for learning discrete latent variables [33, 38], but
no likelihoods are constructed, the boundaries are not explicitly differentiated through, and the model
relies on training with modified gradients based on heuristics.

Disjoint mixture models. The computational savings from using disjoint subsets was pointed out
by Dinh et al. [8]. However, their method only works in each dimension individually. They transform
samples using a linear spline, which is equivalent to creating subsets based on the knots of the spline
and apply a linear transformation within each subset. Furthermore, certain parameterizations of
the spline can lead to discontinuous density functions, whereas our disjoint mixture has a density
function that is continuous almost everywhere. Overall, splines are interesting because each segment
is independent, and the use of monotonic splines have been combined with normalizing flows [10].
However, the splines in Dinh et al. [8] are not enforced to be monotonic, so the full transformation is
not bijective and acts like a disjoint mixture model. Ultimately, their experiments were restricted to
two-dimensional syntheic data sets, and it remained an interesting research question whether disjoint
mixture models can be successfully applied in high dimensions.

D EXPERIMENTS

We experimentally validate our semi-discrete approach of combining Voronoi tessellation within
likelihood-based modeling on a variety of data domains: discrete-valued UCI data sets, itemset
modeling, language modeling, and disjoint mixture modeling. The goal of these experiments is not to
show state-of-the-art results in these domains but to showcase the relative merit of our use of Voronoi
tessellation compared to existing methods. For this reason, we just use basic coupling blocks with
affine transformations [6, 7] as a base flow model for our experiments, unless stated otherwise. When
comparing to Discrete Flows [43], we use their bipartite layers. Details regarding preprocessing for
data sets can be found in Appendix G, and detailed experimental setup is in Appendix H.

D.1 2D SYNTHETIC DATA

We start by considering synthetic distribution over two discrete variables, to compare against Discrete
Flows [43]. Figure 3 shows the target probability mass functions, which are created by a 2D
distribution where each dimension is quantized into 91 discrete values. Though the data is ordinal, no
knowledge of ordering is given to the models. We see that Discrete Flows has trouble fitting these,
presumably because it is difficult to rearrange the target distribution into a factorized distribution.

For our model, we dequantize each discrete variable with a Voronoi tessellation in R2. We then learn
a flow model on the combined R4, parameterized by multilayer perceptrons (MLPs). In Figure 5
we visualize the learned Voronoi tessellation and samples from our model. The learned tessellation
seems to group some of discrete values that occur frequently together, so the resulting model can
have less modes.

D.2 DISCRETE-VALUED UCI DATA

We experiment with complex data sets where each discrete variable can have a varying number
of classes. Furthermore, these discrete variables may have hidden semantics. To this end, we use

12
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Model Dequantization Retail Accidents

Equivariant CNF Voronoi 9.44±2.34 7.81±2.84

Equivariant CNF Simplex 24.16±0.21 19.19±0.01

Equivariant CNF BinaryArgmax 10.47±0.42 6.72±0.23

Determinantal Point Process 20.35±0.05 15.78±0.04

Table 3: Permutation-invariant itemset modeling. Negative log-likelihood results on the test sets in
nats.

Dequantization text8 enwik8

Voronoi (D=2) 1.39±0.01 1.46±0.01

Voronoi (D=4) 1.37±0.00 1.41±0.00

Voronoi (D=6) 1.37±0.00 1.40±0.00

Voronoi (D=8) 1.36±0.00 1.39±0.01

Argmax 1.38 1.42

Table 4: Character-level language modeling. Negative log-likelihood results on the test sets in bits
per character.

unprocessed data sets from the UCI database [9]. The only pre-processing we perform is to remove
variables that only have one discrete value. We then take 80% as train, 10% as validation, and 10% as
the test set. Most of these datasets have a combination of both ordinal and non-ordinal variables, and
we expect the non-ordinal variables to exhibit relations that are unknown (e.g. spatial correlations).

We see that Discrete Flows can be competitive with dequantization approaches, but can also fall
short on difficult data sets such as the USCensus90, the largest data set we consider with 2.7
million examples and 68 different discrete variables of varying types. For dequantization methods,
simplex [36] and binary argmax [17] approaches are mostly on par. We do see a non-negligible gap
in performance between these baselines and Voronoi dequantization for most of the data sets, likely
due to the ability to learn semantically useful relations between the values of each discrete variable.
For instance, the Connect4 dataset contains positions of a two-player board game with the same
name, which exhibit complex spatial dependencies between the board pieces, and the USCensus90
dataset contains highly correlated variables and is often used to test clustering algorithms.

D.3 PERMUTATION-INVARIANT ITEMSET MODELING

A major appeal of using normalizing flows in continuous space is the ability to incorporate invariance
to specific group symmetries into the density model. For instance, this can be done by ensuring
the ordinary differential equation is equivariant [24, 2, 40] in a continuous normalizing flow [5, 12]
framework. Here we focus on invariance with respect to permutations, i.e. sets of discrete variables.
This invariance cannot be explicitly modeled by Discrete Flows as they require an ordering or a
bipartition of discrete variables.

We preprocessed a data set of retail market basket data from an anonymous Belgian retail store [3]
and a data set of anonymized traffic accident data [11], which contain sets of discrete variables each
with 765 and 269 values, respectively for each data set. Given the large number of discrete values, we
expected Voronoi dequantization to perform better. However, we see that in Table 4, binary argmax is
quite competitive, likely because it decomposes the full distribution using multiple binary variables.
We did not do this binarization trick for simplex dequantization, and we see that it suffers from
having to use large embedding dimensions, performing worse than a determinental point process
baseline [25].
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D.4 LANGUAGE MODELING

As a widely used benchmark for discrete models [43, 27, 17], we also experiment with our method
on language modeling. Here we used the open source code provided by Hoogeboom et al. [17] with
the exact same autoregressive flow model and optimizer setups. The only difference is replacing their
binary argmax with our Voronoi dequantization. Results are shown in Table 4, where we tried out
multiple embedding dimensions D. Generally, we find D = 2 to be too low and can stagnate training
since the Voronoi cells are more constrained. The flexibility in choosing D gives us a slight edge in
performance.

E CONCLUSION AND DISCUSSION

We combine Voronoi tessellation with normalizing flows to construct a new invertible transformation
that has learnable discrete structure. This acts as a learnable mapping between discrete and continuous
distributions. We propose two applications of this method: a Voronoi dequantization that maps
discrete values into a learnable convex polytope, and a Voronoi mixture modeling approach that has
the same compute cost as a single component. We showcased the relative merit of our approach
across a range of data modalities with varying structure.

E.1 LIMITATIONS AND FUTURE DIRECTIONS

Diminishing density on boundaries. The distributions within each Voronoi cell necessarily go
to zero on the boundary between cells due to the use of a homeomorphism from an unbounded
domain. This is a different and undesirable property as opposed to the partitioning method used by
[8]. However, alternatives could require more compute cost in the form of solving normalization
constants. Balancing expressiveness and compute cost is a delicate problem and sits at the core of
tractable probabilistic modeling.

Design of homeomorphisms and tessellations. Our proposed homeomorphism is simple and
scalable, but this comes at the cost of smoothness and expressiveness. As depicted in Figure 1, the
transformed density has a non-smooth probability density function. This non-smoothness exists when
the ray intersections with multiple boundaries. This may cause optimization to be difficult as the
gradients of the log-likelihood objective can be discontinuous. Additionally, our use of Euclidean
distance can become problematic in high dimensions, as this metric can cause almost all points
to be nearly equidistant, resulting in a behavior where all points lie seemingly very close to the
boundary. Improvements on the design of homeomorphisms to bounded domains could help alleviate
these problems. Additionally, more flexible tessellations—such as the Laguerre tessellation—and
additional concepts from semi-discrete optimal transport [35, 26, 13] may be adapted to improve
semi-discrete normalizing flows.

F PROOFS

Proposition 3. Let the transformation fk(x) and all intermediate quantities be as defined in Sec-
tion 3.1 for some given input x. Then the Jacobian factorizes as

∂fk(x)

∂x
= cI + u1v

T
1 + u2v

T
2 (15)

for some c ∈ R, ui ∈ RD, vi ∈ RD, and its log determinant has the form

log

∣∣∣∣det ∂fk(x)∂x

∣∣∣∣
= log |1 + w11|+ log

∣∣∣∣1 + w22 −
w12w21

1 + w11

∣∣∣∣+D log c

(16)
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where

∆ ≜ ∥x− xk∥ (22)

c ≜ αk(∆̃)λ∗∆−1 (23)

u1 ≜

[
αk(∆̃)∆−1 − ∂αk(∆̃)

∂∆̃

]
δk(x) (24)

v1 ≜
∂λ∗

∂δk(x)
(25)

u2 ≜

[(
∂αk(∆̃)

∂∆̃

)
− αk(∆̃)λ∗∆−1 − αk(∆̃)∆−1

((
∂λ∗

∂δk(x)

)T

δk(x)

)
(26)

+

(
∂αk(∆̃)

∂∆̃

)((
∂λ∗

∂δk(x)

)T

δk(x)

)]
δk(x) (27)

v2 ≜ δk(x) (28)

wij ≜ c−1vTi uj , for i, j ∈ {1, 2} (29)

Proof. We first write the Jacobian of fk in the form of cI + u1v
T
1 + u2v

T
2 where c is a scalar, and

u1, u2, v1, v2 are vectors of size D. Define the shorthand ∆ ≜ ∥x− xk∥, ∆∗ ≜ ∥x(λ∗)− xk∥,
and ∆̃ ≜ ∆/∆∗. To simplify notation, we use the short-hands αk = αk(∆̃), δk = δk(x). Then the
Jacobian follows
∂fk(x)

∂x
=

∂

∂x

(
xk + αk(x(λ

∗
) − xk)

)
(30)

=
(
x(λ

∗
) − xk

) ( ∂αk

∂∆̃

)(
∂∆̃

∂x

)T

+ αk

(
∂x(λ∗)

∂x

)
(31)

=
(
x(λ

∗
) − xk

) ( ∂αk

∂∆̃

)(
1

∆∗
δ
T
k −

∆

(∆∗)2
(x(λ

∗
) − xk)

T ∂x(λ∗)

∂x

)
+ αk

(
∂x(λ∗)

∂x

)
(32)

=

(
∂αk

∂∆̃

)
δkδ

T
k −

(
∂αk

∂∆̃

)
∆δkδ

T
k

∂x(λ∗)

∂x
+ αk

(
∂x(λ∗)

∂x

)
(33)

=

(
∂αk

∂∆̃

)
δkδ

T
k +

(
αk −

(
∂αk

∂∆̃

)
∆δkδ

T
k

)(
∂x(λ∗)

∂x

)
(34)

=

(
∂αk

∂∆̃

)
δkδ

T
k +

(
αk −

(
∂αk

∂∆̃

)
∆δkδ

T
k

)λ
∗
∆

−1
I − λ

∗
∆

−1
δkδ

T
k + δk

(
∂λ∗

∂δk

)T (
∂δk

∂x

) (35)

=

(
∂αk

∂∆̃

)
δkδ

T
k +

(
αk −

(
∂αk

∂∆̃

)
∆δkδ

T
k

)λ
∗
∆

−1
I − λ

∗
∆

−1
δkδ

T
k + ∆

−1
δk

(
∂λ∗

∂δk

)T (
I − δkδ

T
k

) (36)

=

(
∂αk

∂∆̃

)
δkδ

T
k +

(
αk −

(
∂αk

∂∆̃

)
∆δkδ

T
k

)λ
∗
∆

−1
I − λ

∗
∆

−1
δkδ

T
k + ∆

−1
δk

(
∂λ∗

∂δk

)T

− ∆
−1

( ∂λ∗

∂δk

)T

δk

 δkδ
T
k


(37)

=

(
∂αk

∂∆̃

)
δkδ

T
k + αkλ

∗
∆

−1
I − αkλ

∗
∆

−1
δkδ

T
k + αk∆

−1
δk

(
∂λ∗

∂δk

)T

− αk∆
−1

( ∂λ∗

∂δk

)T

δk

 δkδ
T
k (38)

−
(

∂αk

∂∆̃

)
λ
∗
δkδ

T
k +

(
∂αk

∂∆̃

)
λ
∗
(
δ
T
kδk

)
δkδ

T
k −

(
∂αk

∂∆̃

)(
δ
T
kδk

)
δk

(
∂λ∗

∂δk

)T

(39)

+

(
∂αk

∂∆̃

)(
δ
T
kδk

)( ∂λ∗

∂δk

)T

δk

 δkδ
T
k (40)

=αkλ
∗
∆

−1
I +

[
αk∆

−1 −
(

∂αk

∂∆̃

)(
δ
T
kδk

)]
δk

(
∂λ∗

∂δk

)T

(41)

+

( ∂αk

∂∆̃

)
− αkλ

∗
∆

−1 − αk∆
−1

( ∂λ∗

∂δk

)T

δk

− λ
∗
(

∂αk

∂∆̃

)(
δ
T
kδk − 1

)
+

(
∂αk

∂∆̃

)(
δ
T
kδk

)( ∂λ∗

∂δk

)T

δk

 δkδ
T
k

(42)

=αkλ
∗
∆

−1
I +

[
αk∆

−1 −
(

∂αk

∂∆̃

)]
δk

(
∂λ∗

∂δk

)T

(43)

+

( ∂αk

∂∆̃

)
− αkλ

∗
∆

−1 − αk∆
−1

( ∂λ∗

∂δk

)T

δk

 +

(
∂αk

∂∆̃

)( ∂λ∗

∂δk

)T

δk

 δkδ
T
k (44)
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Now that ∂fk(x)
∂x is in the form of cI + u1v

T
1 + u2v

T
2 , where

c ≜ αk(∆̃)λ∗∆−1 (45)

u1 ≜

[
αk(∆̃)∆−1 − ∂αk(∆̃)

∂∆̃

]
δk(x) (46)

v1 ≜
∂λ∗

∂δk(x)
(47)

u2 ≜

[(
∂αk(∆̃)

∂∆̃

)
− αk(∆̃)λ∗∆−1 − αk(∆̃)∆−1

((
∂λ∗

∂δk(x)

)T

δk(x)

)
+

(
∂αk(∆̃)

∂∆̃

)((
∂λ∗

∂δk(x)

)T

δk(x)

)]
δk(x)

(48)

v2 ≜ δk(x) (49)

Applying the matrix determinant lemma twice, we can show that

det(cI + u1v
T
1 + u2v

T
2 ) = (1 + vT2 (cI + u1v

T
1 )

−1u2) det(cI + u1v
T
1 ) (50)

=

[(
1 + c−1vT2u2 −

c−2

1 + c−1vT1u1

)
vT2u1v

T
1u2

]
(1 + c−1vT1u1)c

D (51)

We simplify this by defining the scaled dot products,

wij ≜ c−1vTi uj , for i, j ∈ {1, 2}. (52)

Then

log

∣∣∣∣det ∂fk(x)∂x

∣∣∣∣ = log |1 + w11|+ log

∣∣∣∣1 + w22 −
w12w21

1 + w11

∣∣∣∣+D log c (53)

Intermediate steps above used the following gradient identities.

∂δk(x)

∂x
=

∂

∂x
(x− xk)∆

−1

=∆−1I + (x− xk)

(
∂

∂x

(
∆2
)− 1

2

)T

=∆−1I + (x− xk)

(
−1

2∆3

)(
∂∆2

∂x

)T

=∆−1I + (x− xk)

(
−1

2∆3

)
2 (x− xk)

T

=∆−1
(
I − δk(x)δk(x)

T
)

(54)

∂∆

∂x
=

∂∆

∂x
=

∂

∂x

(
∆2
) 1

2 =
1

∆
(x− xk) = δk(x) (55)

Log determinant of ∂f−1
k (z)

∂z . We can also use Proposition 3 to compute the log determinant
of the inverse transform without needing to recompute fk(x). The only difference is a sign:

log
∣∣∣det ∂f−1

k (z)

∂z

∣∣∣ = − log
∣∣∣det ∂fk(x)

∂x

∣∣∣. The required quantities, ∆, x(λ∗), and δk(x), are read-

ily available after computing x = f−1
k (z). The gradients with respect to quantities of x can be

expressed using gradients with respect to quantities of z,

∂αk(∆)

∂∆
=

(
∂α−1

k (α̃)

∂α̃

)−1

and
∂λ∗

∂δk(x)
=

∂λ∗

∂δk(z)
, (56)

which are accessible through automatic differentiation.

Proposition 1. The mapping fk : RD → Vk as defined in the 2-step procedure is a homeomorphism.
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Proof. Let x ∈ RD and xk be a given anchor point corresponding to a Voronoi cell Vk. If x ̸= xk,
then x is uniquely represented by the tuple (∆, δ) where ∆ = ∥x− xk∥ and δ = x−xk

∥x−xk∥ , since
x = xk +∆δ. Since δ uniques defines the ray {xk + λδ;λ > 0} and x(λ∗), then because αk in
Equation (8) is a bijection in ∆, fk is a bijection. For x ̸= xk, the continuity of fk follows from Rudin
et al. [39, Theorem 4.7] since ∆ and x(λ∗) are continuous in x and αk is continuous in ∆. Then
since fk(x) → xk as x → xk from all directions, this justifies the choice of setting fk(x) = xk

when x = xk. Finally, by the invariance of domain theorem, since Vk is an open set in RD, fk is an
open map and the inverse f−1

k is continuous, and we can conclude f is a homeomorphism between
RD and Vk.

Proposition 2. If px(x) is continuous, then the transformed density pz(fk(x)) is continuous almost
everywhere.

Proof. See proof of Proposition 3 below for the form of the Jacobian. For the case where x ̸= xk,
all quantities in Equations (22) to (29) are continuous with respect to x. Hence the Jacobian ∂fk(x)

∂x

is continuous, and since it is always full-rank, then the composition
∣∣∣det ∂fk(x)

∂x

∣∣∣ is continuous [39,

Theorem 4.7] and so is the product px(x)
∣∣∣det ∂fk(x)

∂x

∣∣∣ [39, Theorem 4.9].

Proposition 4. For any distribution p(k) with support over {1, . . . ,K}, define the mixture distribu-
tion,

p(x) =

K∑
k=1

p(x|k)p(k), (19)

where p(·|k) is the distribution mapped onto the Voronoi cell Vk (i.e. Equation 10) from a density
that is continuous. Then the density function of the mixture is continuous a.e.

Proof. Proposition 2 ensures the distribution is continuous a.e. within each Voronoi cell. It’s straight-
forward to see that the density of pz(fk(x)) approaches zero as fk(x) approaches the boundaries of
Vk for any properly normalized distribution px.

G DATA SETS

G.1 UCI DATA SETS

The main preprocessing we did was to (i) remove the “label” attribute from each data set, and (ii)
remove attributes that only ever take on one value. Apart from this, the USCensus90 dataset
contains a unique identifier for each row, which was removed. Descriptions for all dataset are below.

Connect4 [webpage] This dataset contains all legal 8-ply positions in the game of Connect Four in
which neither player has won yet, and in which the next move is not forced. The original task was to
predict which player would win, which has been removed during preprocessing. There are a total 42
discrete variables (one for each location on the board), each with 3 possible discrete values (taken by
player 1, taken by player 2, blank). This data set was randomly split into 54045 training examples,
6755 validation examples, and 6757 test examples.

Forests [webpage] This dataset contains cartographic variables regarding forests including four
wilderness areas located in the Roosevelt National Forest of northern Colorado. These areas represent
forests with minimal human-caused disturbances. The original task was to predict the forest cover
type, which has been removed during preprocessing. There are a total of 54 discrete variables, with
10 being the highest number of discrete values. This data set was randomly split into 464809 training
examples, 58101 validation examples, and 58102 test examples.
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Mushroom [webpage] This data set includes descriptions of hypothetical samples corresponding to
23 species of gilled mushrooms in the Agaricus and Lepiota Family. The original task was to predict
whether each species is edible, which has been removed during preprocessing. There are a total of 21
discrete variables, with 12 being the highest number of discrete values. This data set was randomly
split into 6499 training examples, 812 validation examples, and 813 test examples.

Nursery [webpage] This data set contains attributes of applicants to nursery schools, during a
period when there was excessive enrollment to these schools in Ljubljana, Slovenia, and the rejected
applications frequently needed an objective explanation. All data have been completely anonymized.
The original task was to predict whether an applicant would be recommended for acceptance by
hierarchical decision model, which has been removed during preprocessing. There are a total of 8
discrete variables, with 5 being the highest number of discrete values. This data set was randomly
split into 10367 training examples, 1296 validation examples, and 1297 test examples.

PokerHands [webpage] This data set contains poker hands consisting of five playing cards drawn
from a standard deck of 52. Each card is described using two attributes (suit and rank), for a total of
10 predictive attributes. There is one Class attribute that describes the “poker hand”. The original
task was to predict the poker hand class (pairs, full house, royal flush, etc.), which has been removed
during preprocessing. There are a total of 10 discrete variables, with 13 being the highest number of
discrete values. This data set was randomly split into 820008 training examples, 102501 validation
examples, and 102501 test examples.

USCensus90 [webpage] This data set contains a portion of the data collected as part of the 1990
census in the United States, with the data completely anonymized. There are a total of 68 discrete
variables, with 18 being the highest number of discrete values. This data set was randomly split into
2212456 training examples, 122914 validation examples, and 122915 test examples.

G.2 ITEMSET DATA SETS

These data sets were taken from the Frequent Itemset Mining Dataset Repository [webpage]. Each
row is interpreted as a set of items with no emphasis on the ordering of items.

Retail [3] This data set contains anonymized retail market basket data from an anonymous Belgian
retail store. We first removed rows with less than 4 items, then randomly sampled a subset of 4
items for every row. Items that appear in less 300 rows were dropped from the data set. The final
preprocessed data set contains 765 distinct items. This data set was randomly split into 24280 training
examples, 3035 validation examples, and 3036 test examples.

Accidents [11] This data set contains contains anonymized traffic accident data. Data on traffic
accidents are obtained from the National Institute of Statistics (NIS) for the region of Flanders
(Belgium) for the period 1991-2000. We first removed rows with less than 4 items, then randomly
sampled a subset of 4 items for every row. This subsampling occurred 10 times if a row has 16 or
more items, 5 times if the row has 8 to 15 items, and once if the row has 4-7 items. Items that appear
in less 300 rows were dropped from the data set. The final preprocessed data set contains 213 distinct
items. This data set was randomly split into 270129 training examples, 33766 validation examples,
and 33767 test examples.

H EXPERIMENTAL DETAILS

2D synthetic data sets Continuous data sets were quantized into 91 bins for each coordinate. For
Voronoi dequantization, we dequantized each coordinate into an embedding space of 2 dimensions,
with 91 Voronoi cells. The dequantization model is parameterized by 4 layers of coupling blocks,
each with a 2 hidden layer MLP with 256 hidden units each, where the Swish activation function was
used [37]. The flow model is similarly parameterized but with 16 layers of coupling blocks. Each
block alternated between 4 different partitioning schemes: maksing out the first half, masking out
the second half, masking out the odd indices, and masking out the even indices. We trained with the
Adam optimizer [21] with a learning rate of 1e-3.
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UCI data sets For Voronoi dequantization, we dequantized each coordinate into an embedding
space of 4 or 6 dimensions, with the number of Voronoi cells set to the highest number of discrete
values over all discrete variables. The dequantization model is parameterized by 4 layers of coupling
blocks, each with a 2 hidden layer MLP with 256, 512, or 1024 hidden units each, where the Swish
activation function was used [37]. The flow model is similarly parameterized but with 16 or 32 layers
of coupling blocks. Each block alternated between 4 different partitioning schemes: maksing out the
first half, masking out the second half, masking out the odd indices, and masking out the even indices.
We trained with the Adam optimizer [21] with a learning rate sweep over {1e-3, 5e-4, 1e-4}.

Itemset data sets For Voronoi dequantization, we dequantized each coordinate into an embedding
space of 6 dimensions, with the number of Voronoi cells set to the number of items in the data set.
We used a continuous normalizing flow (CNF) with the ordinary differential equation (ODE) defined
using a Transformer archiecture and a L2-distance based multihead attention layer [20] and the GeLU
activation function [14]. No positional embeddings were provided to the model to ensure the model is
equivariant to permutations. We composed 12 CNF layers, each defined using a Transformer model
that has 2 or 3 layers of alternating multihead attention and fully connected residual connections. To
solve the ODE and train our model, we used the dopri5 solver from the torchdiffeq library [4] with
atol=rtol=1e-5. We trained with the AdamW optimizer [29, 47] with a learning rate of 1e-3
and weight decay of 1e-6. For the Voronoi dequantization, we set D=6 for both data sets, though it
may be possible to improve performance by tuning D.

Character-level language modeling We used the provided hyperparameters from the open source
repository [URL]. Some parts of code had to be adapted for our usage, but model architecture and
optimizer remained the same.
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