Neural Event Functions
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Neural Ordinary Differential Equations (ODESs)

We can (implicitly) define a path x(t) satisfying the constraints
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Probabilistic Modeling




Event Handling

- Stop solving “when an event occurs”.
- Defined as g(z(t)) = 0 for an event function g.
- Can introduce discontinuities at event times.

E.g. State of a ball: (position, velocity)
Velocity changes discontinuously upon impact.
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Event Handling

- Stop solving “when an event occurs”.
- Defined as g(z(t)) = 0 for an event function g. .
- Can introduce discontinuities at event times. ‘

E.g. State of a ball: (position, velocity)
Velocity changes discontinuously upon impact.

Can we learn a neural event function?

- Yes! We can compute gradients using the implicit function theorem.
- Implemented in PyTorch as part of github.com/rtqichen/torchdiffeq.



Neural Event ODEs

Three components:

(1) A derivative / drift function f.
(2) An event function g.

(3) An instantaneous update function A. the number of events is

arbitrary and learned

while {; < T do

ti+1, 2,41 = ODESolveEvent(z;, f,g,t;) > Solve until the next event
Ziv1 = M(tiv1,2411) > Determine how the event affects the state
t=1+1

end while

Return: event times {¢;} and the piecewise continuous trajectory {z;(t) fort; <t <t;;1}




Switching Linear Dynamical Systems

- Deconstructs a complex dynamical system into interpretable components.
- Used in neuroscience, finance.

dfi(tt) = xrj\r{—l wmiA(m)z +60™)

(element of a one-hot vector; switches instantly)

(a) Ground truth



Switching Linear Dynamical Systems

- Deconstructs a complex dynamical system into interpretable components.
- Used in neuroscience, finance.
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(element of a one-hot vector; switches instantly)

dt

(a) Ground truth (c) Neural ODE



Switching Linear Dynamical Systems

- Deconstructs a complex dynamical system into interpretable components.
- Used in neuroscience, finance.

dfz—it) = xrj\r{—l wmiA(m)z + b))

(element of a one-hot vector; switches instantly)

(a) Ground truth (b) RNN (LSTM) (c) Neural ODE (d) Neural Event ODE



Modeling Physics with Collision

. h.' ‘f 0 a .' Baselines hover instead of

bounce.

“ a. -. “‘ “ Neural Event ODE on par

with nonlinear Neural ODE,

but uses 10x less function
evaluations to simulate.
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Threshold-based Event Functions

Event occurs when an accumulator reaches a threshold.

t*
t* such that s = / A(t) dt
/ to ™~

(known) (scalar; positive; neural network)

Appears in event-based sampling, temporal point processes (TPP).

E.g. TPP sampling: Samples:

1) Sample the threshold s ~ Exp(1). Repeat - {ty,to,t3,... }
2) Compute t*.




Temporal Point Processes (TPPs)

- We define the reparameterization gradient for TPPs.

- Previous works had to resort to REINFORCE gradient (high variance).
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Discrete Control in Continuous Time

Example of a neuronal dynamical system:
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Discrete Control in Continuous Time

We learned discrete control in two systems:
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(c) HIV dynamics model (d) Hodgkin-Huxley dynamics model

Furthermore, we can learn deterministic discrete control policies.



Takeaway

- Event functions provide an implicit method of terminating ODEs.

- We can differentiate and train neural event functions.

Future applications:

- Useful for modeling robotic arms?

- Motion planning?



