Fast Patch-based Style Transfer of Arbitrary Style

Tian Qi Chen and Mark Schmidt
University of British Columbia

Content

Our Method Our Fast Approx.



Artistic Style Transfer

Combining a picture with Vincent van Gogh’s The Starry Night:




Artistic Style Transfer

Combining a picture with Vincent van Gogh’s The Starry Night:

A painting takes days to complete.
Can a computer be used to transfer the style of a painting onto another image?



Visual Qual mes from use of Convolutional Neural Nets

Success in visual quality has created a market for mobile and web applications.

Gatys et al. (2015), Li and Wand (2016),
Ulyanov et al. (2016), Johnson et al. (2016), Dumoulin et al. (2016)



Existing Approaches: Optimization-based

How to define “style transfer”?

arg min L(Z, Content, Style)
I

Requires hundreds of forward
and backward passes through
the CNN.

Slow

e.g. Gatys et al. (2015), Li and Wand (2016)



Existing Approaches: Feedforward Style Network

m@in L(StyleNet(Content; 0), Content, Style)
StyleNet(Content; 0*) =T

Train a neural network
to approximate the

optimization result. p

Limited in
Style

e.g. Ulyanov et al. (2016), Johnson et al. (2016), Dumoulin et al. (2016)



Existing optimization-based approaches:
adaptable to any style image but slow
Existing feedforward approaches:
fast but limited
We present an approach that is:

feedforward, fast, and adaptable to any style image



Our Approach




Our Approach

« restrict to the use of just a single layer



Our Approach

Compute Activations

Concatenate
Content and Style |
Information

« restrict to the use of just a single layer

« directly construct target activations



Our Approach

Compute Activations Invert Activations
g4

Concatenate
® | Content and Style
Information

« restrict to the use of just a single layer
« directly construct target activations

« an inverse network that is not style-dependent



Our Approach

Compute Activations Invert Activations
g4

Concatenate
® | Content and Style
Information

« restrict to the use of just a single layer
« directly construct target activations

« an inverse network that is not style-dependent

Differences from existing works:

« Decoupling of the style transfer process and image generation

« Constructive procedure instead of defining style transfer as an optimization



Patch-based Replacement (Style Swap)

For every content patch, swap it with the best matching style patch.




Patch-based Replacement (Style Swap)

For every content patch, swap it with the best matching style patch.

BestMatch(c) = argmax ———— (e, s)
seslell - lsll

*(Li and Wand (2016) uses this measure, but inside an optimization procedure.)



Patch-based Replacement (Style Swap)

For every content patch, swap it with the best matching style patch.

BestMatch(c) = arg max _es)
seslell - lsll

*(Li and Wand (2016) uses this measure, but inside an optimization procedure.)



Patch-based Replacement (Style Swap)

For every content patch, swap it with the best matching style patch.

BestMatch(c) = arg max _es)
seslell - lsll

Content Target

Activations Activations
Channel-wise

A\ J A\ J
Y Y
2D Convolution 2D Transposed Convolution
With Normalized Style With Style Patches
Patches as Filters as Filters

Other names for the transposed convolution: fractionally-strided convolution, backward

convolution, upconvolution, or “deconvolution”.



Style Swap RGB Style Swap Activations



yle Swap: Intuitive Tuning Parameter

Control level of abstraction using a single discrete parameter:

patch size.

3 x 3 Patches 7 x 7 Patches 12 x 12 Patches



Inverting Activations: Option |

Pretrained CNN

]




Inverting Activations: Option |

Pretrained CNN

]




Pretrained CNN Inverse Network

"Microsoft COCO
2Painter by Numbers (public; hosted on kaggle.com)



Inverting Activations: Option Il

Pretrained CNN Inverse Network

+ [t ses]s

We do unsupervised training of the inverse network.
We train using 80,000 photos' as content and 80,000 paintings? as style.

"Microsoft COCO
2Painter by Numbers (public; hosted on kaggle.com)



Computation Time

Comparison with existing methods that can handle arbitary style images:

Method N. Iters. Time/lter. (s) Total (s)
Gatys et al. 500 0.1004 50.20
Li and Wand 200 0.6293 125.86
Style Swap (Optim) 100 0.0466 4.66
Style Swap (InvNet) 1 1.2483 1.25

Table 1: Computation time on 500 x 300 size images.



Computation Time

Comparison with existing methods that can handle arbitary style images:

Method N. Iters. Time/lter. (s) Total (s)
Gatys et al. 500 0.1004 50.20
Li and Wand 200 0.6293 125.86
Style Swap (Optim) 100 0.0466 4.66
Style Swap (InvNet) 1 1.2483 1.25

Table 1: Computation time on 500 x 300 size images.

« Computation time for our method can be significantly reduced if number of
style patches is reduced.

« Can scale to large content sizes if style image is kept at a manageable size.



Consistency: Few Local Optima

Standard Deviation of Pixels

S E = Gatys et al. E
© 03 ' —=-Liand Wand |
'g ' —Style Swap |,
0 0.2 : 1
o e Aiarard e vaFil s e e o s SR
0.1 : :
C 1 1
© 1 1
ﬁ 0 1 1
0 100 200 500

Optimization Iteration

Empirically, we observe:

« Similar images — similar style transferred results.

« Consecutive frames of a video — consistent results.



Frame-by-frame Application of Our Method

Timelapse Video of Vancouver, BC

Original video credit to TimeLapseHD.



« We present the first feedforward method for style transfer that can adapt to
arbitrary style.
« Our method for style transfer has the following properties:
» Tunable with a discrete intuitive tuning parameter

« Consistent and allows frame-by-frame application to videos

« Gives a degree of control over the style transfer result




Fast Patch-based Style Transfer of Arbitrary Style

Tian Qi Chen and Mark Schmidt

source code: github.com/rtgichen/style-swap



